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a b s t r a c t

Phase-locked loops (PLLs) are widely used in applications related to control systems and

telecommunication networks. Here we show that a single-chain master–slave network

of third-order PLLs can exhibit stationary, periodic and chaotic behaviors, when the

value of a single parameter is varied. Hopf, period-doubling and saddle–saddle

bifurcations are found. Chaos appears in dissipative and non-dissipative conditions.

Thus, chaotic behaviors with distinct dynamical features can be generated. A way of

encoding binary messages using such a chaos-based communication system is

suggested.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

Phase-locked loop (PLL) is an electronic device de-
signed to extract time signals from transmission channels.
This device has been extensively employed in applications
requiring automatic control of frequency with the aim of
obtaining synchronism, such as in computers, modems,
motors, radars, radio and television receivers, telecommu-
nication networks, etc. (e.g. [1,2]). It is a closed loop
composed by three elements: a phase detector (PD), a
low-pass filter (LPF) and a voltage controlled oscillator
(VCO), as illustrated in Fig. 1.

Consider a single-chain master–slave telecommunica-
tion network, where each node sends signals to a unique
neighboring node. Let yiðjÞðtÞ be the phase of the input
signal and yoðjÞðtÞ the phase of the output signal of the j-th
PLL. The role of j-th PLL is to synchronize the signal voðjÞðtÞ
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generated by its own VCO with the signal viðjÞ ¼ voðj�1ÞðtÞ

provided by VCO of the ðj� 1Þ-th PLL (j ¼ 1;2; . . .).
Assume that:

voðjÞðtÞ ¼ VoðjÞ cos o0t þ yoðjÞðtÞ þ ðj� 1Þ
p
2

h i
(1)

for j ¼ 0;1;2; . . . : Thus, the output signal of every VCO has
periodic form with central frequency o0 and amplitude
VoðjÞ40. The index j ¼ 0 labels the master clock.

The adjustable phase of the output signal of j-th PLL is
yoðjÞðtÞ and it depends on the time-varying phase yiðjÞðtÞ

of the input signal. A synchronous solution corresponds
to the phase errors defined by fjðtÞ � yiðjÞðtÞ � yoðjÞðtÞ ¼

yoðj�1ÞðtÞ � yoðjÞðtÞ (j ¼ 1;2; . . .) assuming constant values or,
equivalently, the frequency errors dfjðtÞ=dt � wjðtÞ ¼

dyiðjÞðtÞ=dt � dyoðjÞðtÞ=dt ¼ dyoðj�1ÞðtÞ=dt � dyoðjÞðtÞ=dt van-
ishing (e.g. [3–6]).

We consider that the input–output relation concerning
the LPF of the j-th PLL is described by the second-order
differential equation:

d2vcðjÞðtÞ

dt2
þ kj

dvcðjÞðtÞ

dt
þ vcðjÞðtÞ ¼

dvdðjÞðtÞ

dt
þ vdðjÞðtÞ (2)
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Fig. 1. Block diagram of a PLL. The PLL input signal is represented by viðtÞ,

the VCO output signal by voðtÞ, the PD output signal by vdðtÞ and the LPF

output signal by vcðtÞ.
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where vdðjÞðtÞ is the input and vcðjÞðtÞ is the output of the
LPF, and kjX0. PLLs with similar filters were already
studied (e.g. [4,7,8]).

Here all PLLs use signal multiplier as PD; therefore, the
PD output vdðjÞðtÞ is given by:

vdðjÞðtÞ ¼ kdðjÞviðjÞðtÞvoðjÞðtÞ ¼ kdðjÞvoðj�1ÞðtÞvoðjÞðtÞ (3)

where kdðjÞ40 is the PD gain of the j-th PLL.
The VCO output phase yoðjÞðtÞ is controlled by the signal

vcðjÞðtÞ according to:

dyoðjÞðtÞ

dt
¼ kvðjÞvcðjÞðtÞ (4)

where kvðjÞ40 is the VCO gain of the j-th PLL.
It is a common approximation to consider that the

second-harmonic appearing in vdðjÞðtÞ will be cut out by
the filter (for a discussion, see [3,5]). Thus, the expression
for vdðjÞðtÞ can be reduced to:

vdðjÞðtÞ ’
kdðjÞVoðjÞVoðj�1Þ

2
sinfjðtÞ (5)

By combining the expressions (1)–(5), the dynamics of
the j-th PLL is described by the following nonlinear
ordinary differential equation:

d3fjðtÞ

dt3
þ kj

d2fjðtÞ

dt2
þ ð1þ mj cosfjðtÞÞ

dfj

dt
þ mj sinfjðtÞ

¼
d3yiðjÞðtÞ

dt3
þ kj

d2yiðjÞðtÞ

dt2
þ

dyiðjÞðtÞ

dt
� gjðtÞ (6)

where mj � ðVoðjÞVoðj�1ÞkdðjÞkvðjÞÞ=240 is called PLL gain.
Since 1980s chaotic circuits (e.g. [9,10]) have been

theoretically analyzed and physically built in order to be
used in applications involving cryptography (e.g. [11,12]),
image processing (e.g. [13]), modulation (e.g. [11,12]),
network synchronization (e.g. [14]), pseudo-random
number generation (e.g. [11,12]), etc. Here we analytically
and numerically investigate the asymptotical solutions of
the network described by Eq. (6) and propose a way of
encoding binary messages using the chaotic behaviors
appearing in such a network. Analyses for first-order
(e.g. [15–17]), second-order (e.g. [18,19]), and different
third-order PLL networks (e.g. [4,6,8,20]) can be found in
the literature.
2. Analysis

Firstly, consider the case where there are two nodes;
that is, only one slave (j ¼ 1) linked to the master clock
(j ¼ 0). Assume that the master phase yoð0ÞðtÞ presents a
linear variation with the time, that is: yoð0ÞðtÞ ¼ Ot þ c,
with OX0 and c ¼ constant. Observe that when yoð0ÞðtÞ �

yið1ÞðtÞ varies as a ramp input (Oa0), then g1ðtÞ ¼ O
becomes a step input.

The third-order differential Eq. (6) for f1ðtÞ � yoð0ÞðtÞ �

yoð1ÞðtÞ can be rewritten as the following three first-order
differential equations:

df1ðtÞ

dt
� w1ðtÞ � f 1ðf1;w1; a1Þ

dw1ðtÞ

dt
� a1ðtÞ � f 2ðf1;w1; a1Þ

da1ðtÞ

dt
¼ � k1a1ðtÞ � ð1þ m1 cosf1ðtÞÞw1ðtÞ � m1 sinf1ðtÞ

þO � f 3ðf1;w1; a1Þ (7)

Notice that ~r:~f ðf1;w1; a1Þ ¼ �k1, where ~f ¼ ðf 1; f 2; f 3Þ.
Thus, the divergent of the vector field ~f related to the
system (7) is negative for k140, implying that the system
is dissipative (which means that volumes in the state
space f1 �w1 � a1 contract along the flow). For k1 ¼ 0
such a divergent is null; hence, this system is conservative
(which means that volumes in the state space are
preserved).

In the PLL jargon, the capture range is defined as the
set of values of the velocity O such that the closed loop is
able of reaching a synchronous state. This state corre-
sponds to a stationary solution with f1ðtÞ ¼ f�1 ¼
constant, w1ðtÞ ¼ w�1 ¼ 0, a1ðtÞ ¼ a�1 ¼ 0 and is represented
by the equilibrium point ðf�1;0;0Þ in the state space.

The nonlinear system (7) presents two equilibrium
points: a point with f�1a ¼ arcsinðO=m1Þ (0pf�1app=2)
and another point with f�1b ¼ p� arcsinðO=m1Þ (p=2p
f�1bpp). These points exist only if 0pO=m1p1. When
O=m141, there is not synchronism.

The local stability of ðf�1a;0;0Þ and ðf�1b;0;0Þ is
determined from the eigenvalues l1;2;3 of the Jacobian
matrix related to the system (7) linearized around each
point. Hartman–Grobman Theorem states that an equili-
brium point is locally asymptotically stable when all
eigenvalues have negative real parts (e.g. [21]). For the
system (7), the eigenvalues l1;2;3 are the roots of the
characteristic equation:

l3
þ a1l

2
þ a2lþ a3 ¼ 0 (8)

where a1 ¼ k1, a2 ¼ 1þ m1 cosf�1 and a3 ¼ m1 cosf�1.
According to Routh–Hurwitz Criterion (e.g. [22]), all
eigenvalues have negative real parts if a140, a240,
a340 and a1a24a3. Here, this last condition corres-
ponds to:

k14kc1 �
m1 cosf�1

1þ m1 cosf�1
(9)

Therefore, for k1 ¼ 0, both equilibrium points are un-
stable and there is a subcritical saddle–saddle bifurcation



ARTICLE IN PRESS

L.H.A. Monteiro et al. / Signal Processing 89 (2009) 1678–16821680
for O=m1 ¼ 1, because if O=m1o1� � for �! 0þ there are
two unstable equilibrium points, and if O=m141þ � there
are not equilibrium points. For k140 and 0pO=m1o1, f�1b

is unstable (because cosf�1bo0) and f�1a is an asympto-
tically stable synchronous state only if k14kc1. For
k1 ¼ kc1, f�1a suffers a supercritical Hopf bifurcation (e.g.
[21]). For this critical value of k1, l1;2 ¼ �is are imaginary
numbers (s40) and l3 is a negative real number. For
k1okc1, f�1a becomes an unstable equilibrium point
and an asymptotically stable limit-cycle appears in the
state space f1 �w1 � a1. Hence, the phase error f1ðtÞ

periodically oscillates if k1okc1. For k1tkc1,
the oscillation period T is given by T ’ 2p=s ’ 2p=

ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m1 cosf�1a

q
Þ.

For k1 ¼ 0, it is numerically found that the system can
exhibit sensitive dependence on initial conditions (SDIC),
characterized by the existence of a positive Lyapunov
exponent (implying exponential divergence of two neigh-
boring trajectories in the state space, e.g. [21]). Thus, there
can be chaotic behavior but there is no (chaotic) attractor
because the system is conservative.

For instance, for m1 ¼ 1 and O ¼ 0:95, then
f�1a ’ 1:253; consequently, kc1 ’ 0:238 (from expression
(9)). Figs. 2 and 3 present the time evolutions of a1ðtÞ

obtained by employing the fourth-order Runge–Kutta
integration method with time step of 0.01 for solving
the differential equations (7). There are three distinct
situations: k1 ¼ 0 (chaos without attractor), k1 ¼ 0:2
(the attractor is a limit-cycle; notice in Fig. 3 that the
oscillation period is about T ’ 5:5) and k1 ¼ 0:4 (the
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Fig. 2. Time evolutions of a1ðtÞ for O ¼ 0:95, m1 ¼ 1 and k ¼ 0. Solid line: initial

ðf1ð0Þ;w1ð0Þ; a1ð0ÞÞ ¼ ð0:01;0;0Þ.

0 50 100 150 200
−1

−0.5

0

0.5

1

t

a1
 (t

)

Fig. 3. Time evolutions of a1ðtÞ for O ¼ 0:95 and m1 ¼ 1. Left: k1 ¼ 0:2
attractor is an equilibrium point with a�1 ¼ 0). Observe
that Fig. 2 illustrates the SDIC phenomenon.

For 0ok1okc1, numerical simulations reveal that two
Lyapunov exponents are negative and the other is null;
therefore, the asymptotical solutions correspond to stable
limit-cycles. Moreover, for k varying from kc1 to zero there
occurs a cascade of period-doubling bifurcations (e.g. [21])
as shown in Fig. 4. If m1 ¼ 1 and O ¼ 0:95, then there is a
period-1 limit-cycle for 0:048tk1t0:238; a period-2
limit-cycle for 0:032tk1t0:047; a period-4 limit-cycle
for 0:030tk1t0:031 and so on. For k1 ¼ 0, the values of
the three Lyapunov exponents are L1 ¼ �L2 ’ 0:05 and
L3 ¼ 0. Observe that the system is conservative in such a
case; hence, L1 þ L2 þ L3 ¼ 0. Thus, there is chaos but no
attractor. The values of the Lyapunov exponents L1;2;3

related to this system were calculated by using the
algorithm proposed by Wolf et al. [23].

Now, consider a three-node single-chain network, with
a master clock plus two PLL slaves. In this case, the
differential equations for the second slave are:

df2ðtÞ

dt
� w2ðtÞ

dw2ðtÞ

dt
� a2ðtÞ

da2ðtÞ

dt
¼ � k2a2ðtÞ � ð1þ m2 cosf2ðtÞÞw2ðtÞ � m2 sinf2ðtÞ

þ m1ðcosf1ðtÞÞw1 þ m1 sinf1ðtÞ (10)

where f2ðtÞ � yoð1ÞðtÞ � yoð2ÞðtÞ.
00 120 140 160 180 200
t

condition is ðf1ð0Þ;w1ð0Þ; a1ð0ÞÞ ¼ ð0;0;0Þ; dotted line: initial condition is
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; right: k1 ¼ 0:4. Initial condition: the origin of the state space.



ARTICLE IN PRESS

−4 −2 0 2 4
−5

−4

−3

−2

−1

0

1

2

3

4

w1

a1

−4 −2 0 2 4
−5

−4

−3

−2

−1

0

1

2

3

4

w1

a1
−4 −2 0 2 4

−5

−4

−3

−2

−1

0

1

2

3

4

w1

a1

Fig. 4. Attractor projected onto the plane w1 � a1. Left: 1-period limit-cycle for k ¼ 0:05; centre: 2-period limit-cycle for k ¼ 0:04; right: 4-period limit-

cycle for k ¼ 0:03. The number of the period corresponds to the number of intersections between the closed curve and the semi-axis defined by w1 ¼ 0

and a140.
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The system composed by the Eqs. (7) and (10) presents
synchronous solution given by ðf�1;w�1; a

�
1;f

�

2;w
�
2; a
�
2Þ ¼

ðarcsinðO=m1Þ;0;0; arcsinðO=m2Þ;0;0Þ only if 0pO=mjp1
for j ¼ 1;2. By inspecting the characteristic equation of
such a system, then an equilibrium point is locally
asymptotically stable only if kj40, cosf�j 40 and kj4kcj �

ðmj cosf�j Þ=ð1þ mj cosf�j Þ for j ¼ 1;2. Saddle–saddle bifur-
cations occur for O=mj ¼ 1 and Hopf bifurcations for kj ¼

kcj for j ¼ 1;2. Thus, if k14kc1 and k24kc2, then both PLLs
tend to a synchronous (stationary) solution (if it exists, of
course). If k14kc1 and k2okc2, then the PLL-1 tends to a
stationary solution and the PLL-2 to a limit-cycle; and if k2

is varied from kc2 to zero there occurs a cascade of period-
doubling bifurcations as already mentioned. If k1okc1,
numerical simulations indicate that both PLLs tend to a
limit-cycle; in this case, five Lyapunov exponents are
negative and the sixth is null. If k1 ¼ 0 or k2 ¼ 0, then
L1 ¼ �L240, L3 ¼ 0 and L4;5;6o0; the system is dissipative
in such a situation; hence, there is a chaotic attractor in
the six-dimensional state space. If k1 ¼ k2 ¼ 0, the system
is conservative and L1 ¼ �L240, L3 ¼ �L440 and L5 ¼

L6 ¼ 0 (for instance, for O ¼ 0:95 and m1 ¼ m2 ¼ 1, then
L1 ’ 0:06 and L3 ’ 0:02); thus, there is non-dissipative
chaos.

If there are n slaves, the condition for existing syn-
chronism along the single-chain network is 0pO=mjp1
and this solution is asymptotically stable only if kj40,
cosf�j 40 and kj4kcj � ðmj cosf�j Þ=ð1þ mj cosf�j Þ for j ¼

1;2; . . . ;n. Saddle–saddle, Hopf and period-doubling bi-
furcations can be produced in a similar way as showed for
n ¼ 1 and n ¼ 2. For any value of n, the system is
conservative if kj ¼ 0 for all values of j, and dissipative if
kj40 for any j. Again, conservative and dissipative chaos
can be generated by such a PLL network.
3. Conclusion

We analytically and numerically investigated the
asymptotical behaviors of a third-order PLL network. We
derived conditions for generating stable synchronism,
periodic and chaotic solutions. Chaos can be produced in
conservative and dissipative conditions. For instance, with
a three-node network (when there is one master clock and
two slaves), dissipative chaos can be achieved by setting
k1 ¼ 0 and k240 or vice versa; and conservative chaos
occurs for k1 ¼ k2 ¼ 0. Hence, by controlling the values of
k1 and k2, chaotic waveforms with distinct dynamical
features can be produced, which be used for encoding
information in a chaos-based communication system.
Thus, this three-node network can be employed as a
binary chaos shift keying transmitter (e.g. [11,12,24]). In
fact, by fixing k1 ¼ 0, binary messages can be generated by
switching k2 between 0 and K40. When k2 ¼ 0, the
transmitted symbol is related to a chaotic time series
where the sum of the Lyapunov exponents is null; when
k2 ¼ K , the other symbol concerns a chaotic time series
where such a sum is negative. Then, by estimating the
sum of the Lyapunov exponents, a transmitted symbol can
be detected in the receiver and the original message can
be recovered. A natural extension of this work is to
implement this kind of encoding and to explore other ways
of encoding information by using three or more PLL slaves.
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