Compressão de Imagens em Movimento

Padrão MPEG-2

PTC2547 – Princípios de Televisão Digital Guido Stolfi – 10/2015

Padrão MPEG-2

- Comitê ISO Moving Pictures Experts Group
- Padrão de Compressão de Áudio / Vídeo

• Aplicações: Radiodifusão, TV de Alta Definição

Aprovado em 11/1994

Padrão MPEG-2

- ISO 113818-1 : Sistema
- ISO 113818-2 : Compressão de Vídeo
- ISO 113818-3 : Compressão de Áudio
- ISO 113818-4 : Testes de Conformidade
- ISO 113818-7 : Áudio (não compatível)

Perfis MPEG-2

Perfil	Recursos Adicionais
Simples (SP)	Nenhum (Sistema Mínimo)
Principal (MP)	Predição bidirecional (Quadros tipo B)
Escalável em SNR (SNRP)	Codificação Hierárquica com níveis diferentes de prioridade para imagem básica e detalhes
Escalável Espacial (SSP)	Codificação Hierárquica com níveis diferentes de prioridade para imagem 4x3 e 16x9
Alto (HP)	Todos os recursos e codificação 4:2:2 (Dobro de amostras de Crominância)

Níveis de Desempenho MPEG-2

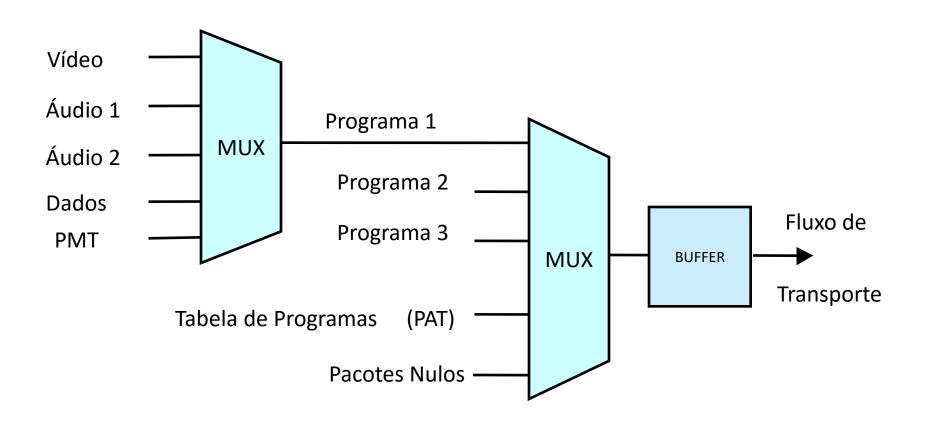
Nível	Formato de Vídeo	Taxa de Bits
Baixo (LL)	240 Linhas x 360 Pontos (qualidade VHS)	~1,5 Mb/s
Principal (ML)	480 Linhas x 720 Pontos (CCIR-601 - Qualidade Estúdio p/ TV Convencional)	4 ~ 6 Mb/s
Alto-1440 (H14L)	1080 Linhas x 1440 Pontos (Formato HDTV)	20 ~ 60 Mb/s
Alto (HL)	1080 Linhas x 1920 Pontos (Formato HDTV - Qualidade Estúdio)	20 ~ 100 Mb/s

Exemplos de Formatos MPEG-2

• **SP@LL** = Multimídia, Vídeo-Conferências (~ MPEG-1)

MP@ML = SDTV (Ex.: DirecTV, DigiSat, DVB)

MP@HL = Radiodifusão Terrestre HDTV


Sistema MPEG-2: Conceitos Básicos

• ISO 13818-1: Systems

 Estrutura que permite combinar vários tipos de informação multimídia em um fluxo de transporte único (Multiplex)

 Meios para garantir sincronismo temporal das informações no receptor (Clock Reference)

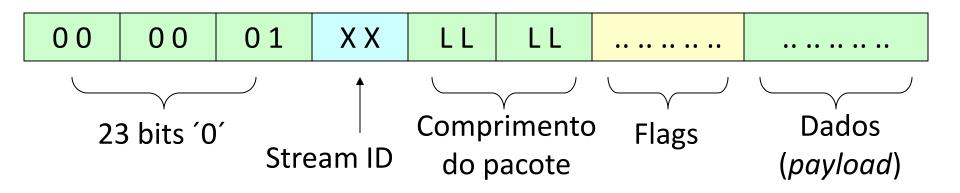
Multiplexação de Programas

Fluxos Elementares (ES)

 Cada codificador (Vídeo, áudio, etc.) gera um fluxo de dados próprio, denominado Elementary Stream (ES)

Taxa de bits pode ser fixa ou variável

Fluxo Elementar em Pacotes (PES)


Packetized Elementary Stream (PES)

Pacotes de comprimento fixo ou variável

Pacotes longos (~2 kB até 64 kB)

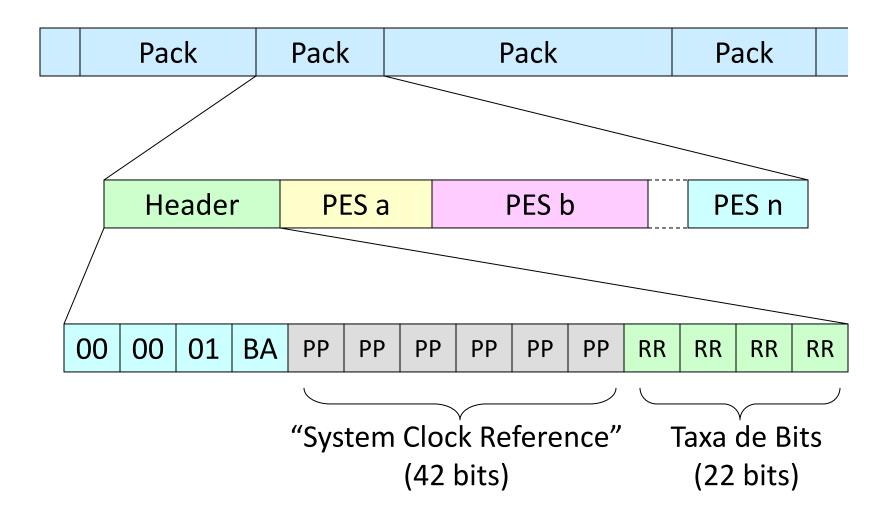
• Delimitados por códigos de início (Start-Code ID)

Códigos de Início de Pacote PES

ХХ	Tipo de Fluxo de Dados
В9	Fim de Packet Stream
ВА	Pack Header
ВВ	Header de Sistema
ВС	Tabela de Mapa de Programas (PS-PMT)
BD, BF	Fluxo de Dados Privado
BE	Enchimento
C0 ~ DF	Áudio MPEG-1 ou MPEG-2
E0 ~ EF	Vídeo MPEG-1 ou MPEG-2

Flags no Cabeçalho PES

- "Scrambling" (Criptografia)
- "Copyright", original / cópia
- "Time Stamp" e referência de "clock" para sincronização
- CRC do pacote PES anterior
- Taxa de bits, etc.

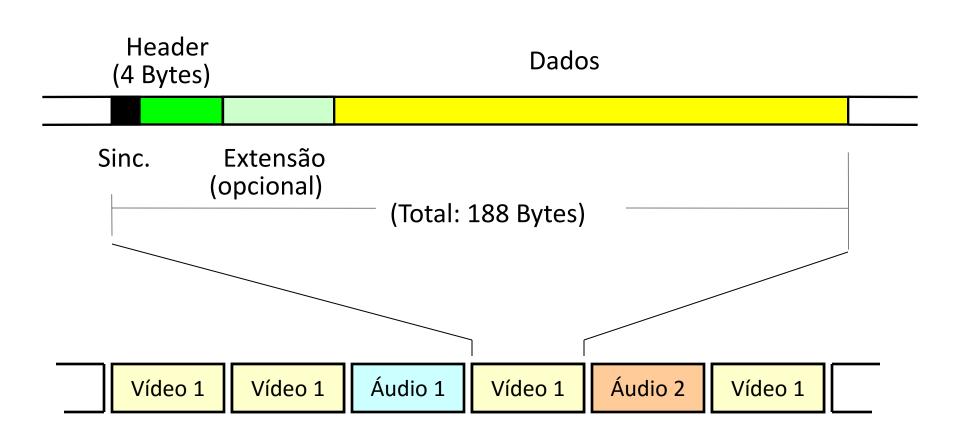

Fluxo de Programa (Program Stream - PS)

 Concatenação de PES's de áudio, vídeo, etc. referentes a um programa

Todos os PES são sincronizados em comum

 Não considera possibilidade de erros de transmissão

Fluxo de Programa (*Program Stream - PS*)


Multiplexação de Pacotes

- Multiplexação Estatística
 - Periódica ou não
 - De acordo com a demanda


- Pacotes de Comprimento Fixo (188 Bytes)
 - Cabeçalho identifica tipo e destino do pacote

- Pacotes Nulos
 - Preenchimento da capacidade do canal

Fluxo de Transporte (Transport Stream - TS)

Estrutura do "Header"

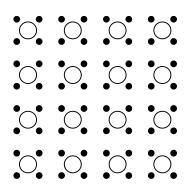
Descrição do PID (Packet Identifier)

X	Programa TV / Outros
PPPPPPPP	Número do Programa (1 - 255)
TTTT	Tipo de Pacote: Oh = Mapa de Programa 1h = Vídeo 4h = Áudio Principal 5h = Áudio Secundário Ah = Dados

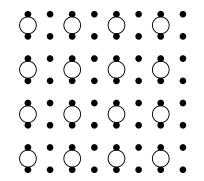
1 1111111 1111 Pacote Nulo (8191)
--

Tabela de Programas (PAT – Program Association Table)

PID = 000	
Fluxo	PID correspondente
Programa 1	020
Programa 2	040
Programa 3	1A0
• • • •	• • •


Mapa de Programa (PMT – Program Map Table)

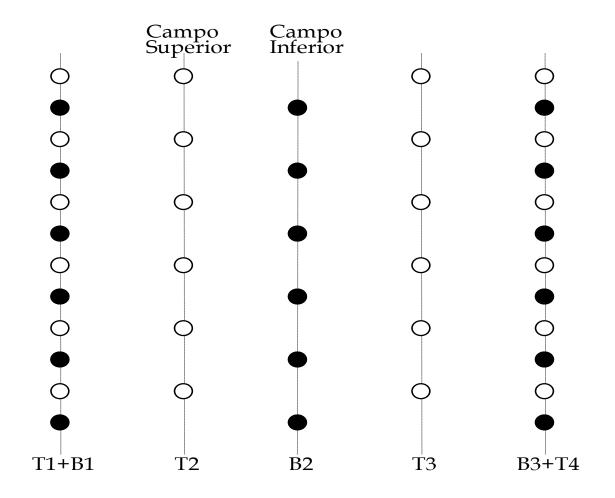
PID = 020	(Programa 1)
Fluxo	PID correspondente
Vídeo	021
Áudio Principal	024
Áudio Secundário	025
Legendas Língua 1	028
• • • •	


Codificação de Vídeo MPEG-2

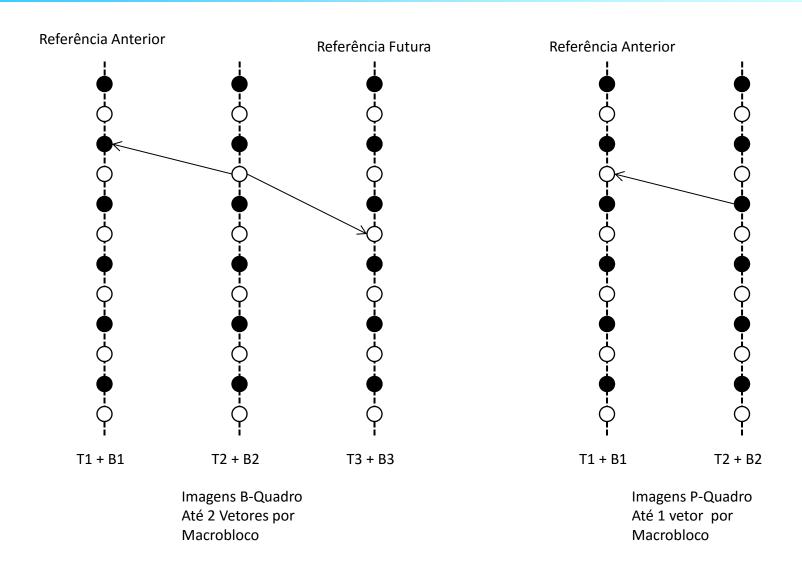
Diferenças em relação ao MPEG-1

Estruturas de Amostragem para MPEG-2

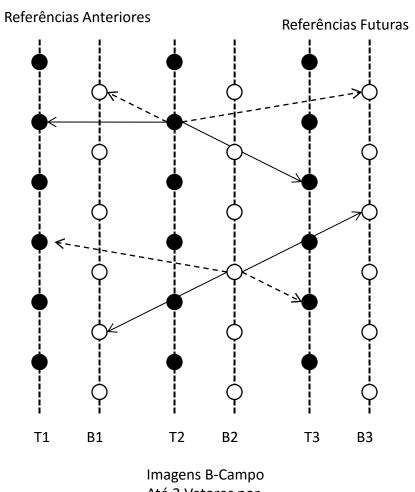
4:2:0 MPEG-1

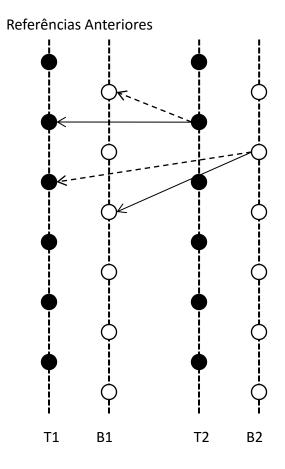


4:2:0 MPEG-2

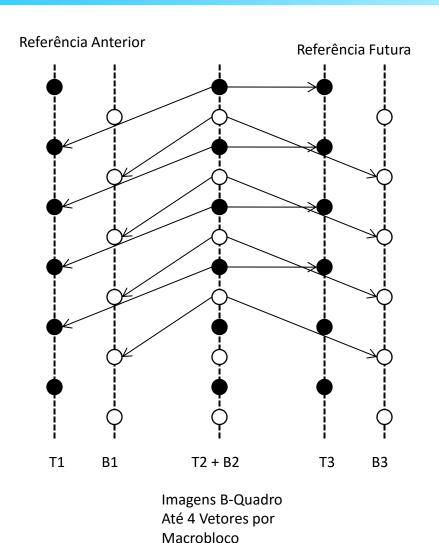

4:2:2 MPEG-2

4:4:4 MPEG-2


Imagens de Campo e de Quadro

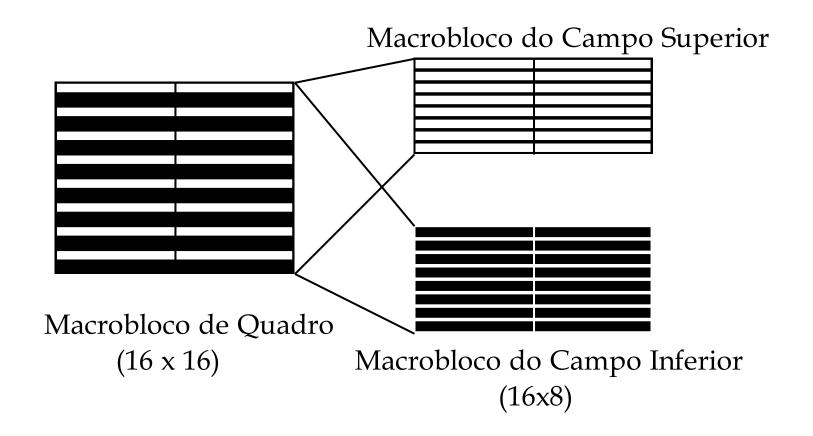

Predição de Movimento Quadro para Quadro

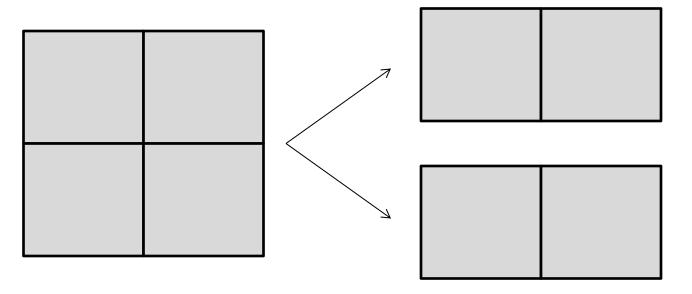
Predição de Movimento Campo para Campo



Imagens B-Campo Até 2 Vetores por Macrobloco

Imagens P-Campo Até 1 vetor por Macrobloco


Predição de Movimento Campo para Quadro


Referência Anterior T2 + B2T1 В1

Imagens P-Quadro Até 2 vetores por Macrobloco

Macrobloco de Campo para Quadro

Predição 16 x 8 para Imagens de Campo

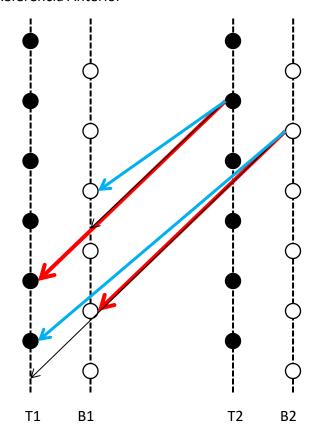
Macroblocos Superior e Inferior com Vetores de Movimento Independentes

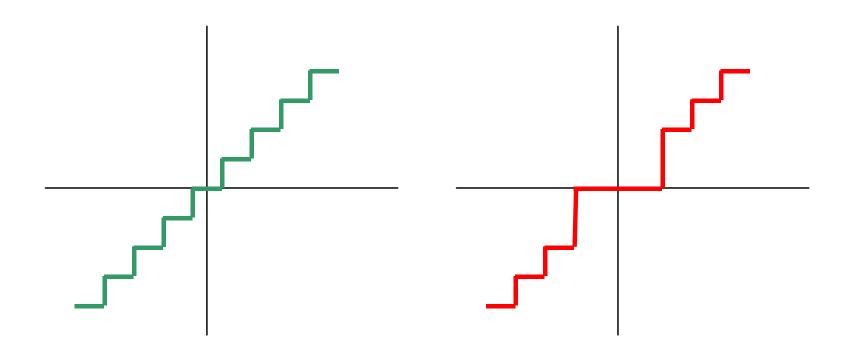
Imagens B-Campo Até 4 Vetores por Macrobloco

Imagens P-Campo Até 2 Vetores por Macrobloco

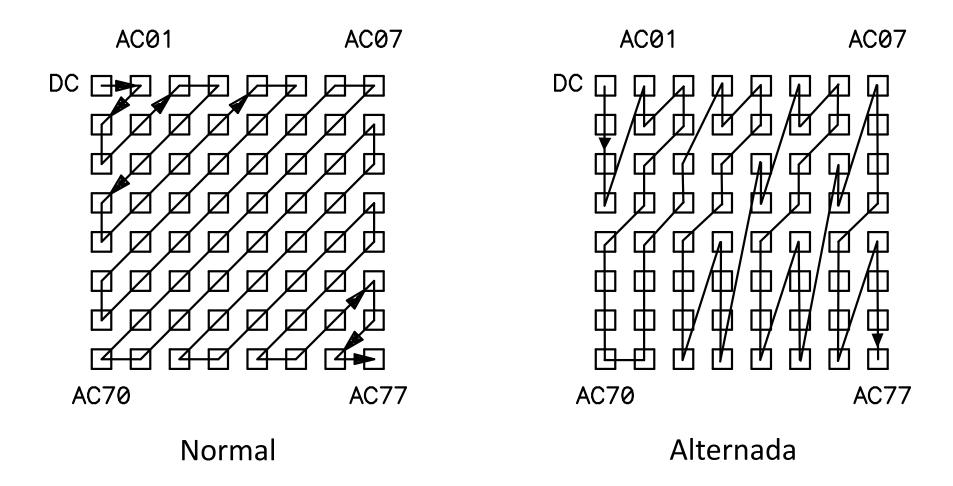
Predição "Dual Prime"

Referência Anterior




Imagem P-Quadro

Predição 1: Quadro para Quadro, usando vetor de movimento transmitido

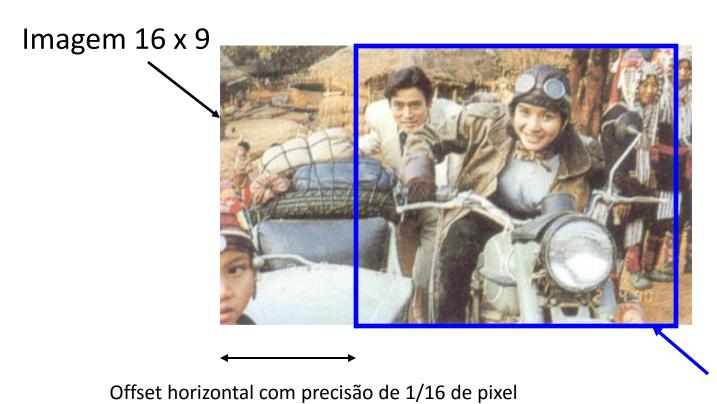

Predição2: Campo para campo, usando vetor de movimento extrapolado e corrigido

Predição final: Média das duas predições

Quantização Linear e Não-linear

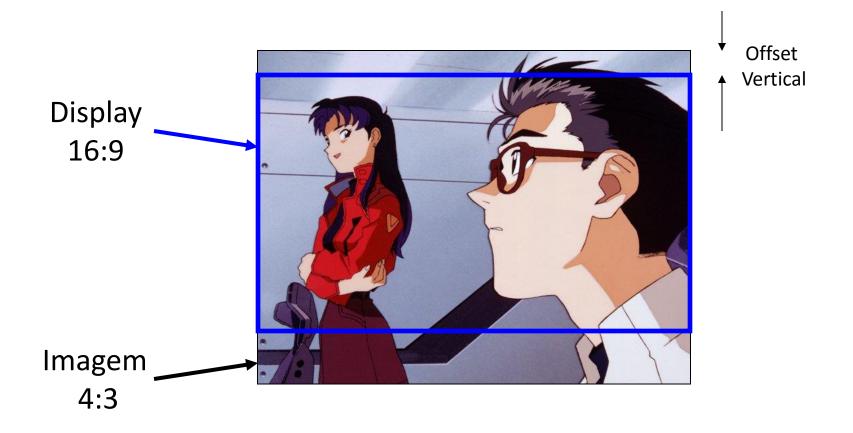
Reordenação dos Coeficientes da DCT

• Dicionário de Codificação Alternativo

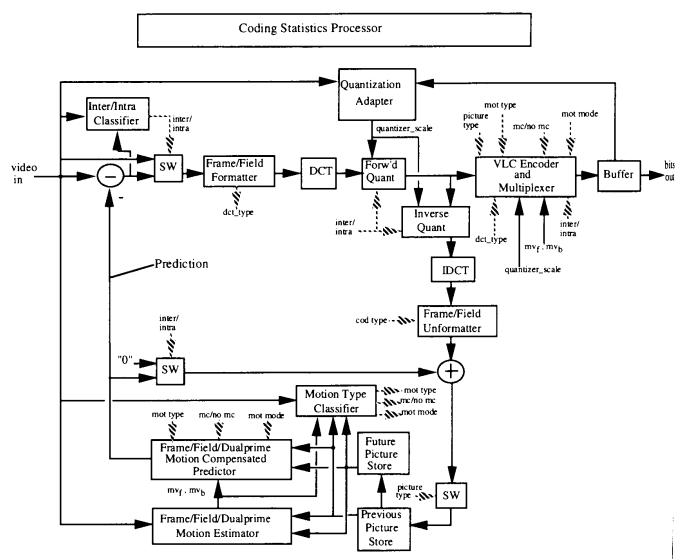

 Fatias de Imagem ("Slices") não ultrapassam a borda direita da imagem

 MPEG-2 só admite vetores de movimento com precisão de ½ pixel

 Macroblocos *Intra* podem conter vetores de movimento para disfarçar erros de transmissão


 Codificação de filmes pode ser feita em 24 quadros/seg; o decodificador implementa "pulldown 3:2"

"Pan & Scan" em imagens 16:9



Display 4:3

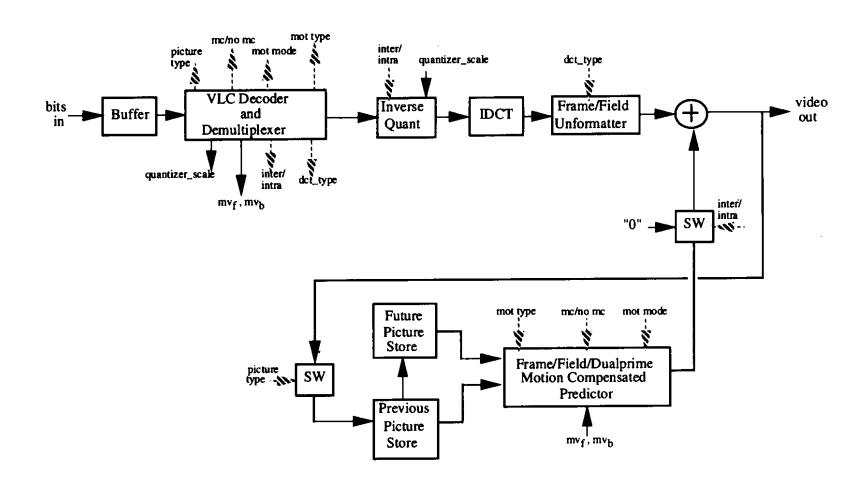

"Pan & Scan" em imagens 4:3

Diagrama de Blocos de um Codificador MPEG-2 Típico

Diagrama de Blocos de um Decodificador MPEG-2 Típico

Desempenho dos Recursos do MPEG-2

Recurso Utilizado	Ganho (dB)
Reordenação Alternada Zig-zag	0,3
Compensação de Movimento Quadro/Campo x MPEG-1	
Compensação "Dual Prime"	
DCT por Quadro / Campo	
Comp. Movimento + DCT Quadro/Campo x MPEG-1	
"Codebook" 1 x "Codebook" 0 (MPEG-1) (Imagens I)	
Grupo de Imagens N=9 x N=15	
Quantizador não-linear	0.0
Imagens de Quadro x Imagens de Campo	
Imagens de Campo x Quadro (Movimentos rápidos)	

Defeitos de Processamento com Altas Taxas de Compressão

- Blocagem e "Mosquitos": descontinuidades nos contornos dos blocos, causadas por quantização excessiva dos coeficientes da DCT;
- Perda de detalhes: texturas suaves são "alisadas", pois a quantização da DCT elimina as componentes de altas freqüências e baixas amplitudes;
- Segmentação de movimento: em objetos com texturas de baixo contraste, partes da imagem permanecem estáticas quando não deviam, pois os macroblocos correspondentes (e seus vetores de movimento) foram descartados nas imagens P e B;
- Perda de detalhes nos movimentos: objetos em movimento que apresentam texturas detalhadas tornam-se ruidosos ou difusos devido a erros na detecção de movimento;
- Vazamento de Croma: como a crominância é desprezada na detecção de movimento, regiões de cores diferentes com alta saturação podem se misturar na imagem.

Demanda de Recursos Computacionais

- Decodificação Videofone 7.5 q/s 100 kbps: ~30MIPS
- Decodificação MPEG-1 320 x 240, 30 q/s, 1.2
 Mbps: ~150 MIPS
- Decodificação MPEG-2 CCIR-601, 30 q/s,
 Mbps: ~600 MIPS
- Codificação MPEG-1 320 x 240, 30 q/s, 1.2 Mbps:
 ~5000 MIPS
- Codificação MPEG-2, CCIR601: ~15000 MIPS

Outros Padrões de Compressão de Vídeo

 MPEG-3: Destinado à compressão de TV de Alta Definição; abandonado (incorporado ao MPEG-2).

- MPEG-4: Codificação genérica de eventos multimídia em baixas taxas
 - Segmentação em planos (Video Object Planes)
 - Ferramentas atualizáveis ("Plug-ins")

Outros Padrões de Compressão de Vídeo

- ITU / IEC H.264: MPEG-4 AVC (Advanced Video Coder)
 - Preditor linear bidimensional para blocos tipo I
 - Blocos 16 x 16, 16 x 8, 8 x 8, 8 x 4, 4 x 4
 - Filtro anti-blocagem
 - Codificação Aritmética

Complexidade computacional: ~5x MPEG-2

Outros Processos de Compressão de Vídeo

- Windows Media Video 9 (SMPTE VC-1)
 - Similar ao H.264
 - Transformadas DCT 8 x 8, 8 x 4, 4 x 8 e 4 x 4
 - Transformada inteira
 - Tabelas VLC múltiplas, podem ser chaveadas quadro a quadro
 - Codificação eficiente em cenas com "fading"

Outros Processos de Compressão de Vídeo

 Compressão Fractal: explora auto-semelhança das imagens "naturais" quanto a translação, escalamento, rotação...

• Compressão por "Wavelets": particionamento em elementos de frequências e localizações espaciais distintas (ex.: Dirac)

Futuro

- UHD TV (Ultra High Definition TV 8k)
 - Demonstração do sistema Super Hi-Vision (NHK, Maio/2006)
 - 7680 x 4320 pixels, 60 a 120 quadros/s, não entrelaçado
 - 25 a 50 Gb/s, comprimido com 16 encoders MPEG-2 para 250 Mb/s; com Dirac ou HEVC H.265 para 70 Mb/s
 - Transmissão experimental via satélite (21 GHz) e Fibra Óptica
 - Transmissão terrestre experimental em 2 canais de 6 MHz, 2 polarizações, OFDM 4096-QAM, 180 Mb/s