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Introduction

- The aim of this presentation is show and critically
discuss some typical situations in EEG based
connectivity studies, with caveat related to
possible pitfalls and some practical suggestions for
the application of Granger-based estimators.

| will show some examples of applications
providing insights into the neural mechanisms at
the basis of cognitive functions, their modifications
resulting from different pathological conditions and
their reorganization due to a specific treatment or
to spontaneous recovery (cortical plasticity)
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Spatial blur of the EEG

* An accurate modelling of the
structures allows to treat efficiently
the problems of standard EEG

* Poorly conductive skull spatially blurs
scalp potentials

e Electrical
reference
depresses near
sources




Steps to improve the spatial resolution of the
/ linear inverse estimation

Dura Mater

Insertion of
the geometry
of scalp, skull
and dura

mater in the
linear inverse
problem




Steps to improve the spatial details of recorded

/ EEG Data




From scalp to cortical signals in ROls
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Linear inverse
estimates within
a ROl are
collapsed (mean)
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 Caveat

- *» All procedures that alter the correlation between data
. can result in false positives or false negatives

* |nstantaneous correlation should NOT affect Granger-
based methods (Kaminski and Blinowska, 2014) but
this is debated (Haufe et al, 2013)

* Scalp analysis is more difficult to relate to brain
circuits

* In case of lesions (of the brain or of the structures of
the head, e.g. for TBI) average models cannot be used

* When moving to the source space, the need for large
dimensional model increases (need to include all the
possible sources)
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Preprocessing for connectivity analysis
' needs attention

* All procedures that alter the correlation between data
can result in false positives or false negatives

e Artifact correction by means of subtraction or ICA
analysis can affect the data correlation

\J * Averaging data across dipoles/voxels can alter the
signals phase

 Normalization to avoid scale difference problems (or
using the right index, e.g. gPDC or iPDC)
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Statistical comparison between networks

|

* |Important for data interpretation
 Comparison between tasks (task-rest, task-task)

 Comparison between groups (patients- controls,
different interventions, ...)

e Evaluations of significant changes in time for a
single subject (patients clinical conditions,
recovery...)




Validation against the null case

‘ PDC
(_’ COMPUTATION

estimated PDC

©O=
APPLICATION
OF A

PERCENTILE i

validated
PDC

PDC
DISTRIBUTION
IN THE NULL
CASE

I Surrogate Distribution (shuffling procedure) ]

= PDC-null case distribution built by iterating PDC estimation on
surrogate data-sets obtained randomly shuffling the phases of
considered data. (Theiler 1992, Faes et al, 2008, 2010)

Asymptotic Statistic

= PDC in the null case tends to a ¥? distribution (Takahashi et al.
2007);



Comparison between different conditions

. Two possible approaches:

e Distribution of the baseline condition, Z-score
task-baseline

e Distribution in each condition through a
resampling approach

 Comparison between different times, tasks, ....

* No need to build a homogeneous group (patients)




Single subject assessment

 Group analysis on the basis of individual indices

a) F (1, 38) = 61,529, p<10*
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Graph Theory

* A graphis a mathematical model that represents the
interactions within a network.
* Itis composed of nodes and connections

Internautes - Mondial 1 milliard - France 25 millions — UK 40 millions.

Social (Newman, 2000) World Wide Web Proteomics (Jeong, 2001)




It is possibile to associate a network to a connectivity pattern
by means of the connection matrix A:

Il
S O© O o O
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A graph is a mathematical model that represents the interactions
within the network

1 COH. + MULTIVARIATE
m COHERENCE
It IS CO pOSEd by PHASE DIFFERENCE. METHODS
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LOCAL INDICES

Sin (i,t) = ZWij (t) In-strength
jev
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Average Graph Indexes
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De Vico Fallani et al., HBM 2007
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Stationarity of the data

* Not always possible
* Transients are lost
* Two possible approaches:
— Sliding window approach (Ding et al, 2000)
— Time-varying estimators based on an MVAR model
with time-dependent parameters (adaptive fit,
Recursive Least Squares with Forgetting Factor, Hesse

et al, 2003; General Linear Kalman Filter, Milde et al,
2010)

RESULT: Time-frequency distributions of Granger causality
Astolfi et al, IEEE Tr Biomed Eng, 2008

\
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Connectivity patterns at different latencies




Grand average connectivity time-course
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General Linerar Kalman Filter
(GLKF) approach

* The GLKF approach to the estimation of
adaptive MVAR was recently introduced
to deal with a high number of time

series in a full multivariate analysis
(Milde et al, 2010)

e Simulations showed an accurate
estimation of functional connectivity
patterns in high dimensional models
(up to 100 nodes) (Toppi et al, 2012)
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Time-Varying Graph Indices
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Time-Varying Network Architecture

azione
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Cortical network |

' Neuroinformatics, 2008
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Limitations of the bivariate methods

If the sources of activities for the problem are more than 2:

Bivariate modelization of signals 1
nd 2 does not recognize that the
¢ ]orrelation between the two
@ 8ignals is due to a common effect of
3 (which is not included in the
model)

@
[

Connectivity pattern

estimated by a bivariate
method

1

1
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Multivariate methods

MLTIVARIATE METHODS: The connectivity pattern is obtained by a
unique model estimated on the entire set of data and takes into
account all their interactons

X1[Nn]

v

X,[Nn]

MVAR

X n[n]

v




A comparison of bivariate vs multivariate methods

Imposed model (correct)

From: Kus R, Kaminski M,
Blinowska K]J, Determination of
EEG activity propagation: pair-
wise versus multichannel
estimate. /[EEFE Trans Biomed Eng,
2004.

Granger Ordlnary Dlrected
causality test Coherence Coherence

33




A comparison of bivariate vs multivariate methods

Imposed model (correct)

From: Kus R, Kaminski M,
Blinowska KJ, Determination of
EEG activity propagation: pair-
wise versus multichannel
estimate. /[EEFE Trans Biomed Eng,
2004.

Directed Transfer Partial Directed
Function Coherence

34
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Implications of statistical assessment

* The lack of a validation
procedure can lead to
erroneously derive
properties of the

—— ; networks even in

o random, uncorrelated

| data (Toppi et al, 2012)

Small-wordness
—
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Case |
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Caveat with graph analysis interpretation

* The lack of an appropriate validation procedure can
lead to erroneously derive properties of the
networks even in random, uncorrelated data

* A bivariate approach can induce false positives and
affect the networks general and local properties
(Efficiencies, degrees,....)
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W 1. Evaluation of a BCl-based motor rehabilitation

Post-Pre training connectivity
contrast

Inter-hemispheric connectivity
significantly increases after the
training (only for BCI group)

after stroke S%ﬂ saNTA LUCI

Pichiorri et al, Annals of Neurology, 2015

BCl-supported motor imagery
training of the upper limb
(28 post-stroke patients)

Better functional outcome in the BCI
group (relevant increase in the FMA

score)




2. Assessment of cognitive functions and their recovery in
{ post-stroke patients

CONTRAST EU project - The objective is to define stable, reliable
EEG-based descriptors of the brain networks underlying
memory tasks able to:

1. characterize the cortical reorganization
subtending improvements in the task
execution

2. support the neuropsychological

assessment in evaluating the efficacy of a
memory training directly in the brain

e8

be sensitive to different outcomes of the
rehabilitative intervention

FONDAZIONE
SANTA LUCIA
IRCCS
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Multi-subjects recordings during social interaction

* A complex system behavior (group)
cannot be fully understood by
analyzing its single elements (single
subjects): we need to study their
interaction

* People act differently according to
the person(s) they are interacting
with, and this must be reflected by
their brain activity

(a) Stimulus-to-brain coupling (b) Brain-to-brain coupling

* The task-related activity
in the brain of one /—\ ,/_\,
subject needs . Signel Signal

_E g
| e
¢ Stimulus \ /\ /\ /\ /\4 Brain g & Brain \(TYIYIY)\4 Brain
to be related to the one =% mw: ;.i......a... i 1:;:&,:
e chemcal, chemscal, le
of the other subject(s) - st Lot

he/she is interacting
! Brain-to-brain coupling constrains and shapes the actions of each individual in a social
wit h network, leading to complex joint behaviors that could not have emerged in isolation.

Hasson et al., Trends Cogn Sci, 201
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Features of multi-subject connectivity patterns
D




Features extraction
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Classification of connectivity patterns
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Coming soon

-

Minisymposium:

Advances in brain connectivity analysis: perspectives
and pitfalls

Friday, 11:00-13:30, Sorcerers Apprentice 2

Invited Session:

Healthy and Altered Functional Brain Connectivity
Revealed in Multimodal Data

Wednesday, 8:00-9:30, Fantasia C
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