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Validation:

— Laminar organization of alpha oscillations in visual cortex
(LFP and MUA)

— Interaction of theta generators in hippocampus (LFP)
Application to scalp EEG:

— Top-down control of sensory biasing in visual spatial attention
and verbal working memory

Application to fMRI:
— Top-down regulation of default mode activity (task fMRI)
— Granger causality and fMRI data (simulation)

— Linking functional and structural connectivity quantitatively
(DWI and rest fMRI)



Validation




Study One
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Human Alpha Rhythm
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Laminar Alpha Pacemakers

—1 Spontaneous Evoked

Silva et al. (1991)



Description of Dataset

Spontaneous local field
potential (LFP) and
multiunit activity (MUA)
were recorded with linear
depth electrodes in V1,
V2, V4 and inferotemporal
cortex of macaques




Results from V4
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Summary One

Direction of Granger causal
Influence agrees with known
direction of synaptic
transmission In columnar alpha
generation




Study Two
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The Trisynaptic Circuit in Hippocampus

Rat hippocampus
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Granger Causality During Theta Rhythm

Rat anesthetized; theta rhythm elicited by brainstem stimulation
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Summary Two

Direction of Granger causal
Influence agrees with

anatomically predicted
synaptic transmission in
hippocampus




Application to Scalp EEG
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Alpha: Indexing the State of Visual Cortex

A [o] g oLV o SIW NN during visual spatial attention
Alpha power increases durlng verbal working memory
retention

Visual spatial attention
Decreased alpha power reflects increased excitability over
visual cortices to enhance stimulus processing.

Verbal working memory

Increased alpha power reflects decreased excitability over
visual cortices to protect the information held online from
external interference.



Top-Down Control of Sensory Biasing

The goal-directed alpha modulation, reflecting sensory
biasing, is likely to be effected by top-down influences from
higher-order control areas (e.g., fronto-parietal network).

» What are the signals that mediate the top-down
control?

= Are these top-down signals issued in a task-
specific manner or by a common set of brain
areas?

= What is the likely mechanism underlying top-
down control?



Experiments

Fixation,
2800+0/200/400 ms

Fixation,
2000 ms

Probe, until response
Recall period

Stimulus, 100 ms

Anticipatory attention, Retention period,

Time

1800-2200 ms 3000 ms
Cue, 1000 ms
Cue, 200 ms Encoding period

= 21 healthy subjects for each experiment
= 128-channel EEG



Alpha Modulation

Spatial Attention Working Memory
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Dipole Sources

FEF
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Source Area Proximate cortical
1D {Approx) region X Y 4
MFG 46 Middle Frontal Gyrus +35 39 27
IFG 45,44 Inferior Frontal Gyrus 142 23 2
ACC 33 Anterior Cingulate Cortex 0 21 27
FEF 6,8 Frontal Eye Field 30 1 51
IPS 7,40 Intraparietal Sulcus +30 -51 48
ITG 20 Inferior Temporal Gyrus +52  -42 -10
oc 18,19 Occipital Cortex +25 | -83 5




GC Analysis: Spatial Attention

A MFG IFG FEF IPS ITG ACC B
0
0
-2
—_ -5 .
1.5 % 1o a;: .
3 =
o s .
Q [T O R I P .
S = midline source -8
E 20 Left source 0 -Lgﬂ
E T [ JRight source - Jrignt
£ -25
g
4
Attend

Frequency (Hz)




GC Analysis: Working Memory
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Summary Three

= The top-down control is likely
mediated by alpha synchrony

= The “top” brain regions are task-
specific

= The top-down signals achieve
sensory biasing via an inhibition-
disinhibition mechanism



Application to fMRI




Study Four
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Questions

During externally oriented attention,
DMN Is deactivated. If this is the
consequence of top-down control,
where does the control signal come
from?

Insufficient DMN deactivation iIs
negatively correlated with behavioral
performance. What Is the consequence
of DMN’s influence on other brain
areas (DMN intrusion)?



Task Control (Salience) Network

MOMENT-TO-MOMENT PROCESSING

Input l:> Specified Output
related transformations related

Dosenbach et al. 2006, 2007



Paradigm

Cue, 200ms
ﬂ D Preparatory Attention, 2500ms

Stimulus, 100ms

Fixation,1200ms

one of the trials

il A F Fl 8
time: 30s 60s 20s 60s 20s 60s 20s 60s 30s

A: attention block B: passive view block F: fixation interval
3 ABBA runs and 3 BAAB runs for each subject




Activation

BOLD change (%)




Deactivation

BOLD change (%)
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Hypotheses

e TCN—->DMN enhances behavioral
performance

« DMN->TCN degrades behavioral
performance




Analysis Flow
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dACC—->PCC and Performance
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PCC—->dACC and Performance

PCC->dACC
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TCN->DMN and Performance
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DMN—=->TCN and Performance

G)
T

DMN—->TCN DMN—-> TCN
O J ) o
= @ 15¢ = |
§ 5 G R=-0.85 2. 2 R=-0.92
> 0.5 > 1t
g 0 S 05
“g’) | L-05 ka o
c 2 - . g g
O § 1 0 1 O 1 0 1
Lower Higher Slower Faster
Accuracy (z-score) RT (z-score)

Better performance -



Network Interactions
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Summary Four

TCN Iissues signals to regulate DMN
activity to optimize behavioral
performance.

DMN, acting as a source of “internal
noise,” disrupts behavioral
performance during external attention
0y Issuing signals to interfere with

TCN activity.




Study Five
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|ssues

 fMRI has low sampling rate (~s)
relative to the time scale of typical
neural activity (~ms).
Hemodynamic response (e.g., latency)

may have significant region-to-region
variability across the brain.

Past work has shown that GC gives
spurious results in simulations where
the correct answer Is known (e.g.,
Smith et al., 2011).




Strategy

Recognizing that in cognitive
neuroscience, It Is often the change of a
dependent variable (e.g., GC) between
experimental conditions that Is of
Interest, we address the question of
whether there exist systematic
relationships between GC at the fMRI
level and that at the neural level.




Neural->BOLD—->fMRI
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Neural GC-BOLD GC Monotonicity
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Neural GC-fMRI GC Monotonicity
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Summary Five

o GC, as an empirical measure, can
always be applied to characterize
fMRI time series.

A monotonic relationship between
fMRI GC and neural GC implies that
Increase or decrease of fMRI GC as
experimental condition is varied can
be interpreted In terms of increase or

decrease of underlying neural GC.







Software Packages

e The Ding lab maintains up-to-date software

« BSMART: A Matlab/C Toolbox for Analyzing
Brain Circuits

* Anil Seth: Causal Connectivity Toolbox
* AFNI has basic routines for estimating GC

 Fieldtrip: Matlab Toolbox for LFP/EEG/MEG
analysis

e BrainVVoyager



Spike Trains or Spike-Field Mixed Recordings

Question: What about spike trains or spike-
field mixed recordings?

Answer: Nonparametric Granger causality
(Dhamala, Rangarajan, Ding, Neurolmage,
2008; Kang et al., Journal of
Neurophysiology, 2015)



Unipolar vs Bipolar

Unipolar recordings:

Area X: X{(t) — R(t); X,(t) — R(t)
Area Y: Y;(t) —R(t); Y5(t) — R(t)
Here R(t) is the common reference.

Bipolar derivations:

Area X: (X1 (t) — R(t)) — (Xz(t) — R(t))
=X, (t) — X3 (¢t)

Area Y: (Y;(t) — R(t)) — (Y2(t) — R(t))
=Y;(t) — Y5(t)
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