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Program Overview 

✦Introduction and Overview - L. A. Baccalá	
✦ Applications of Granger Causality to Neuroscience - Mingzhou Ding	
✦Statistical and Software Applications - K. Sameshima	
✦Power User Applications - L.  Astolfi 	
!

Morning

Afternoon

Data Analysis Challenges	
Challenge Resolution and Discussion



Overview 

✦Introduction - Historical Perspective	
✦Correlation based Connectivity and its Inadequacy	
✦Granger Causality based Connectivity	
✦Partial Directed Coherence	
✦Directed Transfer Function	
✦Model Diagnostics and Interpretation



http://www.lcs.poli.usp.br/~baccala/pdc/CRCBrainConnectivity/
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Key Technology: Multichannel Neural Signal Recording
Modalities

MEG

fMRI
voxel 
based

EEG

LFPs

Multi-Single Unit Data



Active Areas x Interrelations among areas 

neo-phrenology connectivity

Paradigm Change 

Investigate Information Flow



Goal: Recover the active dependence structure between 
neural observations



Correlation Ideas

Karl Pearson - dependence between variables 
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Correlation Ideas

Karl Pearson - dependence between variables  (1896)
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Correlation Coefficient	
 

Degree of geometrical similarity

0≤|ρ|≤1

ρ=0.89



Delayed Waveforms

−5 −4 −3 −2 −1 0 1 2 3 4 5
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

−10 −8 −6 −4 −2 0 2 4 6 8 10
−4

−2

0

2

4

6

8

10

Delay of x with respect to y 

Cross Correlation Function

x
y

xcorr(x,y)
Latency



Time Series	



Are Melanomas and Solar activity connected?	

(after extracting means and trends and normalizing with respect to variance)	



What is the meaning of cross-correlation?	

Latency  - when the correlation is maximum	

(propagation delay)	 3 years	



Logic

If 2 wave shapes are similar (accounting for delay) the	
physical processes are 'connected'

Minimal "Distortion" Implicit

Limitation:  Pairwise Analysis



Popular Expositions

Correlation	
Centered



350 www.sciencemag.org/products

“Genomes are child’s play compared with connectomes.”
Nevertheless, researchers are making a stab at the problem. From the 

so-called macroscale of magnetic resonance imaging, to the microscale 
of electron microscopy, the connectome is slowly coming into focus, 
one synapse at a time.

The Human Connectome Project
When thinking about the connectome, says Hongkui Zeng, senior direc-
tor of research science at the Allen Institute for Brain Science, 
think Google Maps. Neuroscientists would like to navigate the brain in 
virtual space as modern travelers do on the Internet: by zooming in and 
out and panning at will, from entire brain regions down to individual 
cells and synapses. In this metaphor, says Zeng, macroscopic MRI efforts 
reveal only neural superhighways. Still, she says, that can be useful, pro-
viding “an overview of the global sense of how regions are connected to 
each other, and how the world is organized.”

That goal lies at the heart of the Human Connectome Project 
(HCP), a $40 million NIH effort launched in September 2010 to map 
the wiring of the live human brain. Two research consortia were funded 
under the HCP, with $30 million going to Washington University in 
St. Louis and the University of Minnesota, and $8.5 million to Mas-
sachusetts General Hospital (MGH) and the University of California, 
Los Angeles (UCLA). 

While both teams are pursuing technology development, the 
WashU/Minnesota team also focuses on production, pushing 1,200 

When Seung says in Connectome: 

How the Brain’s Wiring Makes 

Us Who We Are, “You are your 
connectome,” what he means is that neu-
ral connectivity is like a fingerprint. Each 
person has their own unique blend of ge-
netics, environmental influences, and life 
experience. Those factors influence the 
detailed circuitry of the brain, such that 
even identical twins likely differ at the 
level of neural connectivity.

By mapping those connections, re-
searchers hope to understand the normal 
variability of human connectomes and 
how they change and rewrite themselves 
as humans learn, mature, and age. They 
can begin to probe how connectomes 
become dysfunctional in traumatic brain 
injury or neurodegenerative disorders, or 
in patients with, say, schizophrenia or au-
tism—conditions that Seung terms “con-
nectopathies.” 

Yet the very scale of the problem is 
daunting. Only one connectome has been 
mapped to completion, and that was the 
roundworm, Caenorhabditis elegans. C. el-

egans contains just 300 neurons joined by 
7,000 connections, yet charting its neural 
connectivity took more than a decade to 
complete. “Your connectome is 100 bil-
lion times larger [than C. elegans], with 
a million times more connections than 
your genome has letters,” Seung writes. 

Genomics—February 15

Proteomics—March 1

Fluorescence Multiplexing—April 12

Upcoming Features

This is Your Brain: 
Mapping the Connectome
It’s been 20 years since Francis Crick and Edward Jones, in the midst of the so-called 
Decade of the Brain, lamented science’s lack of even a basic understanding of human 
neuroanatomy. “Clearly what is needed for a modern human brain anatomy is the 
introduction of some radically new techniques,” the pair wrote in 1993. Clearly, 
researchers were listening. Today, they are using novel technologies and automation 
to map neural circuitry with unparalleled resolution and completeness. The NIH 
has dedicated nearly $40 million to chart the wiring of the human brain, and the 
Allen Brain Institute has poured in millions more to map the mouse brain. The 
data will take years to compile, and even longer to understand. But the results may 
reveal nothing less than the nature of human individuality. As MIT neuroscientist 
Sebastian Seung writes, “You are more than your genes. You are your connectome.” 
By Jeffrey M. Perkel

“You are more 

than your genes. 

You are your 

connectome.”
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The Connectome
Life Science Technologies
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Earlier

Limited to Comparing the activity of Pairs of Structures

Correlation Analysis

(Coherence Analysis - Fourier Representation)

Search for Structures of Correlated/Coherent Activity

neo-phrenology



Frequency Domain

- Describe Phenomena important over 'bands'  

EEG α, β, γ, δ bands

- Robust against Linear Distortion 

when different bands propagate at different  speeds

- Fourier Transform of  Cross Correlation Function



Cross Spectrum

(Nonparametric Estimates)
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Coherence Function: normalized cross-spectrum
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points to link 

in those frequencies

Nonparametric Estimate

- Linear relationships!
- Synchronization between structures



Remarks:
nonlinear link
uncorrelated additive noise

Cxy(f)
2
< 1

Interpretation:

x(k) y(k)
H(f)

f0f0

tuned
filters

Cxy(f0)
2

r2
Pearson Correlation

per frequency

x f0(k)

yf0(k)



"Internal" H(f) Structure

x(k) y(k)
H(f)

x(k) y(k)
H(f)

XWhich alternative? Latency based 
Decision



M.A.L. Nicolelis (Ed.)
Progress in Brain Research, Vol. 130
© 2001 Elsevier Science B.V. All rights reserved

CHAPTER 3

Overcoming the limitations of correlation analysis for
many simultaneously processed neural structures

Luiz A. Baccalá 1,Ł and Koichi Sameshima 2

1 Telecommunications and Control Enginering Department, Escola Politécnica, Av. Prof. Luciano Gualberto, Trav. 3, #158, University of
São Paulo, São Paulo, SP, CEP 05508-900, Brazil

2 Disc. Medical Informatics and Functional Neurosurgery Laboratory, School of Medicine, University of São Paulo, São Paulo, Brazil

Introduction

Despite modern methods in molecular biology, neu-
roanatomy, and functional imaging, monitoring elec-
tric signals from neuronal depolarization remains
important when evaluating the functional aspects of
both normal and pathological neural circuitry. Cor-
relation methods still rank popular and are exten-
sively used to analyze the functional interaction in
the electroencephalogram (EEG), the magnetoen-
cephalogram, local field potentials and more re-
cently, in simultaneously recorded single- and multi-
unit activity of many structures (tens to hundreds at
a time). This last item has deserved increasing atten-
tion due to its potential in bridging the gap between
the study of isolated single neurons and the under-
standing of encoding and processing of information
by neuronal populations (Eichenbaum and Davis,
1998; Nicolelis, 1998).

A host of other analytical techniques have
emerged, some employing information theoretic ra-
tionales by assessing mutual information (Yamada et

Ł Corresponding author: Luiz A. Baccalá, Telecommunica-
tions and Control Enginering Department, Escola Politéc-
nica, Av. Prof. Luciano Gualberto, Trav. 3, #158, Univer-
sity of São Paulo, São Paulo, SP, CEP 05508-900, Brazil.
E-mail: baccala@lcs.poli.usp.br

al., 1993; Rieke et al., 1997; Brunel and Nadal, 1998)
or interdependence between signal pairs (Schiff et
al., 1996; Arnhold et al., 1999), while others are
extensions of spectral analysis=coherence analysis
(Glaser and Ruchkin, 1976; Duckrow and Spencer,
1992; Christakos, 1997; Rosenberg et al., 1998).
Despite these advances, a large fraction of neuro-
scientists still chiefly rely on the cross-correlation
between the activity of pairs of neural structures to
infer their functionality.

Like cross-correlation, all of these methods are in
one way or another restricted in their calculations
to using just the signal of two structures at a time.
In this article, we show that it is not only possible
but also desirable to analyze more than two struc-
tures simultaneously. Furthermore, we show also
that effective structural inference is only possible
if simultaneous signals from many (representative)
structures are jointly analyzed.

To handle many simultaneous structures, we em-
ploy the recently introduced notion of partial di-
rected coherence (PDC). This is a novel frequency
domain approach for simultaneous multichannel data
analysis based on Granger causality that employs
multivariate auto-regressive (MAR) models for com-
putational purposes (Baccalá and Sameshima, 1999).
We review PDC in Section 2 and illustrate its useful-
ness via toy linear models simulating multi-electrode
EEG measurements in Section 3, where we contrast

CICERO/GALAYAA B.V./NICO3: pp. 1-15







Latency Measurement 

Cross-Correlation 







Granger-Causality	
 Based Connectivity



Causality

Aristotle
Physics II 3 and Metaphysics V 2. 

~ 350 BC Hume 
An Enquiry Concerning Human

Understanding (1758)
Bertrand Russell

On the Notion of Cause
(1913)

Predecessor is
responsible for 

(generates)
successor



Bayesian Networks ~ 1988

Pearl, J., Causality - 1999
Clive Granger

(~1969)
Nobel Econ. 2003

Kramers- 
Kronig
~ 1920

Causality

Smoke and Cancer?
Proabilistic Relationship

Consistent Temporal Precedence

Physical Systems
have no response
prior to excitation

Prediction Improvement

Bayes ~1763



Causality	

Bayesian 

Physical 

Granger 

Not necessarily temporal	
Many "samples" - population based	
!

Intervention based	

Observational	
Temporal	

Alright, alright you´ve won your bet:
You can lift me with one hand.



Causality

Sublata causa, tollitur effectus 	

requires manipulation by the experimenter

Do away with cause, suppress its the effect	

a binary relation - who is the culprit?



Granger Causality

• Observational only - non-interventional	
• Originally uses bivariate time series analysis	

• based on prediction improvement	
• Coupling Directionality

Saito & Harashima (1981) (in neuroscience) 

prediction!
errory’s pastx’s past

No G-cause condition	
for all k

1969 (in econometrics) 

Consistent Temporal Precedence 





Granger Causality is unreciprocal	

Y is "causal" to X	

does not mean	

X is "causal" to Y	

Unlike correlation which is reciprocal	



Two Time Series	

Granger causality = testing if prediction error reduction	
                       for the other time series when both are	

modelled compared to separate models	

Comparing 	



Frequency Domain	
Interpretation



Univariate Parametric Representation	
white noise (innovations) 	



Canonical Decomposition	

Spectral Density Matrix	

Innovations	



Spectral Density Matrix Factorization	

Least squares fit	

Data	

Residue covariance



Parametric Coherence Representation	

(special case)	

Depends on the interaction 
in both directions 

!



(Saito & Harashima 1981)	

Reason for the name: a factor into which coherence can be decomposed	
!

DTF: Directed Transfer Function   (Franaczuc et. al 1985)	

Coerência Direcionada	
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 Equivalent Model	

(Sims 1982)	



Key Technology: Multichannel Neural Signal Recording
Modalities

MEG

fMRI
voxel 
based

EEG

LFPs

Multi-Single Unit Data



The same data set has

2 different

possible representations

In the Multivariate Case

How does Granger causality generalize?

N>2



Time Series Representations

Moving Average (MA) DTF
frequency domain

Autoregressive (AR) PDC
frequency domain



Moving Average (MA) DTF
frequency domain

Representation One





Multivariate Autoregressive Time Series Models

Obtain by model fitting



Inversion Duality



Power Spectral Density Matrix



Autoregressive (AR) PDC
frequency domain

Representation Two











Partial Directed Coherence (PDC)





Directed Transfer Function (Kaminski & Blinowska, 1991)

Directed Coherence	
(Baccala et al, 1998)

Information DTF	
(Takahashi et al, 2010)



PDC 2001

gPDC 2007

Information PDC 2011

iPDC



Multivariate Spectral Time  Series 

•Coherence (Counterpart to Correlation in Time)	
•Pairwise case	

•Factorization 	
•DTF	
•PDC	

Apply to More than 2 time series	
!



What do they reveal?

•Identical for time series pairs (N=2)	
DTF/MA=PDC/AR=Granger Causality	

•Expose distinct interaction aspects when N>2



DTF=PDC	
=

N=2 time series

Granger Causality



DTF/MA PDC/AR

Information

Illustration of the Differences

(Takahashi et al, 2010)



The Connectivity Problem

Detection Characterization

Prevalent Paradigm

Amount of Correlation/Coherence



Toy Example 1

1 2

DTF=PDC=Granger Causality
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Normalized Freq. (x-axis)

2 time series



DTF=PDC	
(Granger Causality)



1 2ressonant	
filter



Toy Example II
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DTF

=

Sum-up of Influences Direct and Indirect
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Toy Model III
(x 100)



Toy Model III
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Toy Model III
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DTF and PDC 	

•Allow focusing on dynamic details of connections	
•Work when coherence does not	
•Give directional signal-flow information	
•Are complementary for more than 2 time series	

•PDC represents immediate adjacent structure 
descriptions	
•DTF collects direct + indirect signal pathway flows



Effective Connectivity 

Functional Connectivity 

the influence one neural system exerts  over another

temporal correlations between remote neurophysiological events

(Friston, 1994)

• relating to the way in which something works or operates: there are important functional differences between 
left and right brain.

from Latin functionem (nominative functio) "performance, 

from Latin effectivus, from efficere 'accomplish'



Effective/Functional Classification	
!

needs 	
!

UPGRADING!



Proposal

Link Centered Description

10

(see Lütkepohl 1996, p. 185 eq. (16)).

These results are summarized as ⇠
n

and ⇠
d

quantities that
appear on Table 3 and comprise (A.32).

The use of Slutsky’s lemma concludes the proof by allow-
ing the use of estimated quantities.

A.4 Null Hypothesis Test

Under the null hypothesis

H0 : |�
ij

|2 = 0 () Ic
ij

h = 0 (A.44)

both (A.31) and (A.32) equal zero, and (5) no longer ap-
plies so that the next Taylor term becomes necessary (Serfling
1980) weighted by one half of PDC’s Hessian at the point of
interest with an O(n�1

s

) dependence. Via a device similar to
that used in Takahashi et al. (2007), one can show that

Proposition 3 Under (A.44)

n
s

(hIc
i

S
d

Ic
i

h)(|b�
ij

|2 � |�
ij

|2) d!
qX

k=1

l
k

�2
1 (A.45)

where l
k

are the eigenvalues of D = LT Ic
ij

S
n

Ic
ij

L, where L
is the Choleski factor of ⌦

h

. Furthermore q = rank(D)  2,
its value is 1 whenever � 2 {0,±0.5}.

The result in (A.45) amounts to a linear combination of
�2
1 variables whose relative weights depend on estimated pa-

rameter and covariance values. Keep in mind that ⌦
h

de-
pends on � (see eq. (A.14)).

Proof In view of the generalized delta method version, Theo-
rem 1 whose conditions call for use of m = 2 under H0 (A.44)
since both (A.31) and (A.32) become nullified.

First of all, note that taking derivative of (A.31) and
(A.32) with respect to � a second time does not alter the Ic

ij

a
dependence and so also produces null results. The same holds
when deriving (A.32) with respect to a since it is quadratic
in Ic

ij

a.
By contrast, the only nonzero surviving term is that of

taking the derivative of (A.31) with respect to a, which, under
H0, reduces to

2
hT Ic

i

S
d

Ic
i

h
Ic
ij

S
n

Ic
ij

.

Therefore the Hessian in (A.9) only has an upper nonzero
block corresponding to the derivative of (A.31) with respect
to h so that one only needs to consider the distribution of
the latter to write

n
s

(ĥT Ic
j

S
d

Ic
j

ĥ)(|�̂
ij

|2 � |�
ij

|2) d! xT Ic
ij

S
n

Ic
ij

x, (A.46)

using Theorem 1 for x
d! N (0,⌦

h

). The use of Slutsky’s
lemma concludes the first part of the proof by allowing the
use of estimated quantities.

Diagonalization of xT Ic
ij

S
n

Ic
ij

x is done via a transforma-
tion through the matrix L obtained from the Choleski de-
composition of ⌦

h

= LLT . By making x = Ly, where L =
S1/2
n

Ic
ij

L, yields xT Ic
ij

S
n

Ic
ij

x = yTLIc
ij

S
n

Ic
ij

Ly = yTDy so
that the elements of the vector y = (LTL)�1LTx are made
mutually independent zero mean and of unit variance. Now
diagonalizing D = U⇤UT with UUT = I

q⇥q

produces

yTDy =
qX

k=1

l
k

yTu
k

uT

k

y =
qX

k=1

l
k

⇣2
k

(A.47)

where u
k

is the k-th column of U. It is easy to show that the
variables ⇣

k

= uT

k

y are mutually independent, normal zero
mean and of unit variance so that ⇣2

k

are �2
1 random variables.

As rank(X) = rank(XT ) and

rank(XY)  min(rank(X), rank(Y)),

it follows, after recalling explicit � dependence, that

rank(D) = rank(LT Ic
ij

S
n

Ic
ij

L)

= rank(LLT Ic
ij

S
n

Ic
ij

)

= rank(⌦
h

(�)Ic
ij

S
n

Ic
ij

)

= rank(H(�)C(�)⌦↵CT (�)HT (�)Ic
ij

S
n

Ic
ij

), (A.48)

which is upper bounded by rank(Ic
ij

) = 2. It is readily ver-
ified that, when � 2 {0,±0.5}, rank(C(�)) = 1 imposes the
upper bound thus concluding the proof. As for the PDC case
(Baccalá et al. 2013) if the model order p = 1, though a de-
tailed proof is more involved, one can show that the rank of
CT (�)HT (�)Ic

ij

equals 1 as it has only a single row that is not
identically zero.
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Which one to use?

DTF

PDC if link description is desired

to sum-up the net effect
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Directed Transfer Function: Unified Asymptotic Theory and Some of
its Implications

Luiz A. Baccalá, Member, IEEE, Daniel Y. Takahashi, Koichi Sameshima, Member, IEEE

Abstract– Objective: To present a unified mathematical deriva-
tion of the frequency dependent asymptotic behaviour of the
three main forms of directed transfer function (DTF). Methods:
A synthesis of the results (proved in an extended Appendix) is
followed by a series of Monte Carlo simulations of representative
examples. Results: DTF estimators are asymptotically normal
when the true value are different from zero. Under the null
hypothesis H0 : DT F = 0 the estimator is distributed as a linear
combination of independent c

2
1 variables. Conclusions: Null DTF

rejection is shown to be achievable with identical performance
irrespective of which DTF form is adopted. Significance: Together
with recent allied partial directed coherence (PDC) results, this
paper rounds up connectivity inference tools for a class of
frequency domain connectivity estimators.

Index Terms—DTF asymptotics, partial directed coherence,
DTF connectivity

I. INTRODUCTION

The recent realization of the potential role of connectivity
analysis as a tool for understanding how the brain works has
given rise to the appearance of a huge number of connectivity
estimation methods that employ observed neurophysiological
signals [1]–[6]. One common limitation of most methods is
that their statistical behaviour is poorly understood and the
existence of connectivity is often done without clear rigorous
justification. One exception to this state of affairs is repre-
sented by [7] which discusses the rigorous characterization
of partial directed coherence (PDC) [8] and its immediate
variants [9], [10].

Here we carry out the statistical characterization along the
lines presented in [7] for directed transfer function (DTF) [11],
a frequency domain characterization of connectivity, that can
be thought as a factorization of the coherence between pairs
of observed time series [8].

PDC and DTF constitute dual connectivity description con-
cepts. PDC captures active immediate directional coupling
between structures whereas DTF portrays the existence of
directional signal propagation even if it is only indirect, i.e.
when signals may travel through intermediate structures rather
than through an immediate direct causal influence path [12].
Thus DTF reflects signal ‘reachability’ in a graph theoretical

L. A. Baccalá is with Telecommunications and Control Department, Escola
Politécnica, University of São Paulo, Av. Prof. Luciano Gualberto, trav. 3,#
158, São Paulo, SP, 05508-900, Brazil. Tel.: +55-11-3091-5508, Fax: +55-11-
3091-5319, email: baccala@lcs.poli.usp.br

D. Y. Takahashi is with Psychology Department, Princeton University,
Princeton, NJ 08540, USA. email:takahashiyd@gmail.com

K. Sameshima is with Department of Radiology and Oncology, Facul-
dade de Medicina, University of São Paulo, São Paulo, Brazil. email:
ksameshi@usp.br

sense whereas PDC is akin to an adjacency matrix description
[13].

Much like PDC, DTF has given rise to a number of variants,
that were deemed appropriate to different situations, whose
discussion from a historical perspective is provided by their
authors in [14]. Since DTF’s introduction, we examined two
of its variants (a) directed coherence (DC) [15] which is
DTF’s scale invariant form (and dual to generalized PDC
(gPDC) [9]) and (b) information DTF (iDTF) which is an
information theoretic generalization of DTF we introduced,
dual to information PDC (iPDC), both of which provide
accurate effect size information of the connectivity strength,
i.e. of the amount of information flow [10], [16], [17].

Here we derive and illustrate inference results for the latter
DTF forms from a unified perspective closely paralleling the
inference results in [7] which were further illustrated in [18].
The importance of accurate asymptotics for DTF is that jointly
DTF and PDC allow extending the current effective/functional
classification connectivity concepts to a more accurate general
and informative context [19], [20].

After briefly reviewing DTF’s formulations (Sec. II) to-
gether with a summary of the unified asymptotic results (Sec.
III), numerical illustrations (Sec. IV) discuss some implica-
tions of the results that are further elaborated in Sec. V.
For clarity, mathematical details are left to the Appendix
whose implementation is to appear in the next release of
the AsympPDC package [7] which may be downloaded from
http://www.lcs.poli.usp.br/~baccala/pdc/dtf.html together with
data and scripts used in the examples contained here.

II. BACKGROUND

The departure point for defining the present DTF variants
is an adequately fitted multivariate autoregressive time series
(i.e. vector time series x(n) made up by xk(n), k = 1, . . . ,K)
model:

x(n) =
p

Â
l=1

A(l)x(n� l)+w(n), (1)

where w(n) stands for a zero mean white innovations process
of with Sw = [si j] as its covariance matrix and p is the
model order. The ai j(l) coefficients composing each A(l)
matrix describe the lagged effect of the j-th on the i-th
series, wherefrom one can also define a frequency domain
representation of (1) via the Ā(l ) matrix whose entries are
given by

Āi j(l ) =

8
><

>:

1�
p
Â

l=1
ai j(l)e�j2pl l , if i = j

�
p
Â

l=1
ai j(l)e�j2pl l , otherwise,

(2)
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Connection Characterization (if  H0 is rejected)

Connection Detection

H0: No PDC (DTF) exists at f can be rejected at α

PDC (DTF) ~ Normally distributed



DTF/MA PDC/AR

Information

Information Flow 	
Interpretation

(Takahashi et al, 2010)



Diagnostics and 
Interpretation

- Reliance on model fitting

- “truthfulness” needs including “all” variables of interest

Implications on model size and signal length

Model quality appraisal

- Limited to ‘linear models’  

(as is correlation)
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Some Developments	
at EMBC 2016

• Time Variant Linear Models for Short Segment ERPs	
• Nonlinear Connectivity (Symposium)



Program Overview 

✦Introduction and Overview - L. A. Baccalá	
✦ Applications of Granger Causality to Neuroscience - Mingzhou Ding	
✦Statistical and Software Applications - K. Sameshima	
✦Power User Applications - L.  Astolfi 	
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Data Analysis Challenges	
Challenge Resolution and Discussion





Thank You!

http://www.lcs.poli.usp.br/~baccala/pdc


