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Program Overview

Morning

*Introduction and Overview - L.A. Baccala

+ Applications of Granger Causality to Neuroscience - Mingzhou Ding
*Statistical and Software Applications - K. Sameshima

*Power User Applications - L. Astolfi

Afternoon

Data Analysis Challenges
Challenge Resolution and Discussion



Overview

*Introduction - Historical Perspective

*Correlation based Connectivity and its Inadequacy
*Granger Causality based Connectivity

*Partial Directed Coherence

*Directed Transfer Function

*Model Diagnostics and Interpretation



METHODS in BRAIN CONNECTIVITY
INFERENGE THROUGH WULTIVARIATE
TIME SERIES ANALYSIS




Key Technology: Multichannel Neural Signal Recording

Modalities

EEG
LFPs




Paradigm Change

Active Areas X Interrelations among areas

neo-phrenology > connectivity

Investigate Information Flow



Goal: Recover the active dependence structure between
neural observations



Correlation ldeas

Karl Pearson - dependence between variables
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Correlation ldeas

Karl Pearson - dependence between variables (1890)

Correlation Coefficient

O<|p|=1
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Degree of geometrical similarity
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Wolfer Sunspots

Melanoma Incidence (Connecticut, USA)
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Are Melanomas and Solar activity connected?
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What is the meaning of cross-correlation?

Latency - when the correlation is maximum

(propagation delay) 3 years
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Logic

If 2 wave shapes are similar (accounting for delay) the
physical processes are '‘connected

Minimal "Distortion” Implicit

Limitation: Pairwise Analysis



Popular Expositions

" Networks of the Brain
A Correlation
. Centered
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How the Brain’s Wiring Makes Us Who We Are
Olaf Sporns

Discovering the Human ,..&
Connectome e e

Olaf Sporns




Life Science Technologies

The Connectome

This is Your Brain:
Mapping the Connectome

It’s been 20 years since Francis Crick and Edward Jones, in the midst of the so-called
Decade of the Brain, lamented science’s lack of even a basic understanding of human
neuroanatomy. “Clearly what is needed for a modern human brain anatomy is the
introduction of some radically new techniques,” the pair wrote in 1993. Clearly,

researchers were listening. Today, they are using novel technologies and automation

g
to map neural circuitry with unparalleled resolution and completeness. The NIH
has dedicated nearly $40 million to chart the wiring of the human brain, and the
Allen Brain Institute has poured in millions more to map the mouse brain. The
data will take years to compile, and even longer to understand. But the results may
reveal nothing less than the nature of human individuality. As MIT neuroscientist
Sebastian Seung writes, “You are more than your genes. You are your connectome.”

By Jeffrey M. Perkel

Produced by the Science/AAAS Custom Publishing Office

hen Seung says in Connectome: “Genomes are child’s play compared with connectomes.”

How the Brain’s Wiring Makes Nevertheless, researchers are making a stab at the problem. From the

Us Who We Are, “You are your  so-called macroscale of magnetic resonance imaging, to the microscale

connectome,” what he means is that neu-  of electron microscopy, the connectome is slowly coming into focus,

ral connectivity is like a fingerprint. Each  one synapse at a time.

person has their own unique blend of ge-

netics, environmental influences, and life The Human Connectome Project

experience. Those factors influence the =~ When thinking about the connectome, says Hongkui Zeng, senior direc-

detailed circuitry of the brain, such that  tor of research science at the Allen Institute for Brain Science,

even identical twins likely differ at the think Google Maps. Neuroscientists would like to navigate the brain in



Earlier

Limited to Comparing the activity of Pairs of Structures

‘ Correlation Analysis

(Coherence Analysis - Fourier Representation)

Search for Structures of Correlated/Coherent Activity

neo-phrenology

00606



Frequency Domain

- Describe Phenomena important over 'bands’

EEG o, B, v, 6 bands

- Robust against Linear Distortion

when different bands propagate at different speeds

- Fourier Transform of Cross Correlation Function



rads |

-16

Cross Spectrum

magnitude

Common frequency

Same information as
cross-correlation

Phase is linear over
the region of common

" ' " "
0 0.1 0.2 0.3 0.4

Normalized Frequency

0.5

variance

(Nonparametric Estimates)



Coherence Function: normalized cross-spectrum

- Linear relationships
- Synchronization between structures

Coherence

1 F

0.9}
0.8}

0.7}

High Coherence
points to link
in those frequencies

0.6}

0.5)

0.4f

0.3

0.2

0.1}

0 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5

Normalized Frequency

Nonparametric Estimate



Interpretation:

*(K) (k)

2
| C(f0)
tuned
filters l
T
Pearson Correlation

per frequency

2
‘ny(]‘)‘ <1 Remarks:
e nonlinear link

e uncorrelated additive noise



"Internal” H(f) Structure

x (k)

Which alternative?

—>

H(f)

>

(k)

Latency based
Decision

H(f)

<

y(k)



M.A.L. Nicolelis (Ed.)
Progress in Brain Research, Vol. 130
© 2001 Elsevier Science B.V. All rights reserved

CHAPTER 3

Overcoming the limitations of correlation analysis for
many simultaneously processed neural structures

Luiz A. Baccala ''* and Koichi Sameshima 2

I Telecommunications and Control Enginering Department, Escola Politécnica, Av. Prof. Luciano Gualberto, Trav. 3, #158, University of
Sdo Paulo, Sdo Paulo, SP. CEP 05508-900, Brazil
2 Disc. Medical Informatics and Functional Neurosurgery Laboratory, School of Medicine, University of Sdo Paulo, Sdo Paulo, Brazil



"Toy" Model

Same Frequency
oscillators

Feedback
produces

oscillation at the
same frequency
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Toy Model Simulation Time Series
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Latency Measurement
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Toy Model Latency Measurements




Comparnson between theoretical and latency-based

structural inference

undetec ted feedback

Theoretical

inverted signal flow | Nonexisting
| ' connection




Granger-Causality
Based Connectivity



Causality

Aristotle
Physics Il 3 and Metaphysics V 2.
~ 350 BC Hume
An Enquiry Concerning Human Bertrand Russell
Predecessor is Understanding (1758) On the Notion of Cause
responsible for (1913)
(generates)

successor



Causality

Physical Systems
have no response
prior to excitation

Bayes ~1763

Kramers-
Kronig
Pearl, J., Causality - 1999 ~ 1920

Clive Granger
Smoke and Cancer? (~1969)

Proabilistic Relationship Nobel Econ. 2003

Consistent Temporal Precedence

Bayesian Networks ~ 1988 Prediction Improvement



Causality

Bayesian

Not necessarily temporal
Many "samples” - population based

Physical

Intervention based

Granger

Observational
Temporal

@Gngmalﬁ«ms’[ ) i)

He prnductn:un rights nl:utamal:ule frn:urn
W, CannnnStncI{ com

||||

HdGIWE 2008

o o A W e

Alright, alright you've won your bet:
You can lift me with one hand.




Causality

Sublata causa, tollitur effectus

Do away with cause, suppress its the effect

requires manipulation by the experimenter

a binary relation - who is the culprit?



Granger Causality

1969 (in econometrics) Saito & Harashima (1981) (in neuroscience)

® Observational only - non-interventional

® Originally uses bivariate time series analysis
® based on prediction improvement

® Coupling Directionality

No G-cause condition
axy(k) =0 for all £

kw(n—k)+ e(n)

®

P P
x(n) = Y, aw(k)x(n—k)+ Y, ay,
k=1 k=1

prediction

) p error
X 's past y'’s past

Consistent Temporal Precedence



2 Time Series

ax(k)=0
means lack of connection

P P
x(n)= Y ax(x(n—k)y+ ), axlk)yn—k)+ en)
k=1 o k=1 g
M M error

past of past of
X y

Y is "causal” to X only if its past

signiﬁcanthnces the present of X

(Granger causality)



Granger Causality is unreciprocal

Y is "causal" to X

does not mean

Xis "causal" toY

Unlike correlation which is reciprocal



Two Time Series

Least Squzres Adjustment —_
prediction error

/4

Error Covariance

x(k) B i A (1) axy(D) || X(k—17) N ex(k) Matrix
VR | AL ax(@) ay@) JLk=i) | [ eph) |
/( 0% Oy ]
Data o %
Granger causality = testing if prediction error reduction
for the other time series when both are
modelled compared to separate models
P
x(k) = Z‘i Px(i)x(k — i)+ ex(k)
=
Comparing

VAR(ex) << VAR(éx) <= ayy(k) # 0



Frequency Domain
Interpretation



Univariate Parametric Representation

white noise (innovations)

p g
V(k) = ; aiy(k—1)+ ;,) bie(k — i)

2 4 L 4

» = = >
e(k) H e | k)

Sy(f) = IH(f)I 20%

>

i Frweq. (I-Gloz) i ) Freq. (Hz)
White Noise Filtered White Noise




Canonical Decomposition

Spectral Density Matrix

Sx(ﬂ Sn (f) — H (f) H“ U) O-:% O xy H (f) Hm (f) ’
Sx}-‘ (f) S1(][) | H X Qf) H VY (f) Oyx O 12 H e (f) H vy (J‘)
=9 " Huf) /--—4@+ X()
Innovations
Y HL(

00— Hy(f o




Spectral Density Matrix Factorization

Least squares fit

X |_§l anl) ag() || 2D | Fetd |
YR S an@) ap(@) JL k=0 | ek | T
0y Ox
Data Oy O}
4 p p N
Holf) Ho) |_|| 7R @0~ ay e
Hylf) Hy(f) B \ _ﬁ’i Ay l-)e—j27zﬁ | _ﬁi a}ﬂ,,(z')e‘ﬂ@ﬁ )

A <1/2



Parametric Coherence Representation

(special case)

0-326 O'xy:O

oy =0 0j

Depends on the interaction

> in both directions
Saxp(f)

0 Ho DH(f) + 0 H o (DS,
JS:(N JSy(f)

Cy(f) =




Coerencia Direcionada

(Saito & Harashima 1981)

0-)’)’H Xy (f) 0 1{1/=Hx,1/’(f)

yXV(f) — — :
“ 2 2 IS0
‘/0'/%);‘]—]@(]()‘ + O'J%lexx(/)l

Reason for the name: a factor into which coherence can be decomposed

DTF: Directed Transfer Function (Franaczuc et.al 1985)

— ny(f)
«/‘Hw(f)‘ 2+‘Hyy(f)‘ 2

DTF (1)




Causal Relations
using directed coherence y;(/)
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Key Technology: Multichannel Neural Signal Recording

Modalities

EEG
LFPs




In the Multivariate Case

How does Granger causality generalize!?
N>2

The same data set has

2 different

possible representations



Time Series Representations

frequency domain

Autoregressive (AR) > PDC

an(r)y ap(» ... ... a¥)

|
N

[ xi(k) . xike-r | | wid |
. a{;’(.?’{) . 1 .

xk—-r) | | wa(k) |

\.
II
—

[ .\T_\'(‘k\) ]

L av1(r) ... ... ... axn(r) |

frequency domain

Moving Average (MA) > DTF

-

‘ | | hi1(r) hi2(r) ... ... hin(r) _ |
x1(k) o0 : : : : : w1(k)

= IR e

| xn(k) | | wa(k) |

L () ... . o haw(r) |




Representation One

Moving Average (MA)

-

(k)

[ X ;\,-'( ]f) |

frequency domain

[ () () ..

| i ()

hi(r)

hin(r)

-

ha(r) |

(k) |

| walk) |

DTF



Alternative to the multivariate Case

Spectral Density Matrix for more than 2 time series

Spectral Density

Matrix Ean S(f) - H(f)ZHH(/)

- H]](f) H]p_(f) H]N(f) 1 / \ [ O_%l 0'13 0_.13\; -
H(f) = 1(f) H, (f) \'(f) v 0'231 0253
H\l(/’) H\ f) . H\\(f) R~ QTR . M

Directed Transfer Function (Kaminski & Blinowska, 1991)

D TF ;;(f) = ”m
.
21,0

Directed Coherence (Baccala et al, 1998)

Vij(f) -




Multivariate Autoregressive Time Series Models

] _ [ an(r) an(ry ... ... ain(r) __
x1(k) ) : : : : : xi1(k-r)
: = X ay(r) :
Cxy (k) | - : | xn(k—7)
L avi(r) ... axy(r) |

i 4 e L
B ] — ;21 a,-,-(r)e‘-’“’?ﬁ , 1fi=j
A i(f) = 3 '

2 ay;(re??™  otherwise

: r=1

Obtain by model fitting



H(f)

 Hu() Hi) ... Hiv@) |
Hx(f) Hx(f) ... Han(f)

. Hwn(f) Hw(f) ... Hyn(f) |

Inversion Duality
< > A

CAu() An() ... A ]
Azl(/) Azz(f) AzN(f)

L An(f) Ava(f) ... Ann(f) |



Power Spectral Density Matrix

S(f) = H)ZH" (1)

—Hll(ﬂ le(f) HlN(f) | - 0'%1 O12 ... OIN -

HZl(f) H22(f) H2N(f) 021 0'52

| Hni(f) Hw(f) ... Hww(f) . . . | 2




Representation Two

frequency domain

Autoregressive (AR) > PDC

Can (P ap® ... ... a) |
: : : : : [ vy (k— ) || wi (k) —
ag(ry : - :
: : xyk—-r) | | w(k) |

I
N

xi(k)

\,
[
—

| an(k)

L an () ... . aw(r) |



Partial Coherence

ii(f)]” = a() = a(f)|”
/ (@(N 2 ai()a (N 2" ai(f))

matrix columns

\\

a;(f) = [/L/(f)]

p —_— o 3
y 1 - X a;(r)e?*™, ifi= can be directly computed from
Aif) =1 [’fl the multivariate autoregressive
_ 21 a,y(r) ef/znf;~, otherwise model (Baccala 2001)
yau]




Partial Coherence

Coherence between the resulting series after
optimal subtraction of the effect of other N-2
series

Extraction
of the effect
between the
other series




_ _ i a11(r) app(r) ... ... ain(r) -- o )
x1(k) - ' ' : ; x1(k-r) w(k)
: : aplrl : i :

L '\‘;"\"'(k &= I') ’ 3 H\(/‘) o

I
I M

/

| X N(/") ¢

L aNl(r) a‘,\f‘,‘\.-'(l‘) .

Result:

Given a multivariate autoregressive of the data,
the pairwise partial coherence may be written
using

I p o5 @
] — Zl Cl,']'(l”)e—jznﬁ, 1t =_j
= .

p o ,
- Zl a;;(r)e7*”,  otherwise
= :



PDC

(Partial Directed Coherence - PDC)

A fz{/'(/)
PDC fromjtoi |"\V) = F——
J%A@@Akj(ﬂ

e derived from factoring partial coherence



Partial Directed Coherence (PDC)

PDC
dl /LJ\ AL 2
2
-y |
g oL L ) GZC)J—
|(_U i )] hﬁ
6
7 1 L Deduced
1 2 3 4 5 6 7

Source

2 (2)
GK?)— o‘e»e
O—0

Correlation Based Picture

True



2
3
Target 4
>
6
7
Correct

Direction

DTF

3

4

Source

5

] Espectro

Coeréncia

B DTF

Inferred



Information DTF
(Takahashi et al, 2010)

Directed Transfer Function (Kaminski & Blinowska, 1991)

O-].]'Hij(]) Directed Coherence
K N 9 (Baccala et al, 1998)
]§1 UJJ" H, U)‘
7 H(w)

> lDTFU‘((D) —

J hf{ () Zwhi(w)



7 i(f) & l Ai(/) 5DE 2001

al - -
\/;;AZf(f)Aki(f)
-
() 2 745 (f)
gﬂlj(f) K — . gPDC 2007
2 ANy
7' Ay(w)
| > lﬂj'(a)) —
Information PDC 201 | J \/CIJH(CU)Z;VI —

iPDC



Multivariate Spectral Time Series

S(f) = H(f)2H" (/)
[ Hulf) Holf) ... Hud) | [ o7 12 ... OW |
H(f) = H:Z-_ (H H _|f j| Hlﬂ . 0:3-_ 0?3
| Eni(f) Ha(f) ... Half) | TN oer or. OOy |

* Coherence (Counterpart to Correlation in Time)
*Pairwise case

eFactorization
DTF

PDC
Apply to More than 2 time series



VWhat do they reveal?

® [dentical for time series pairs (N=_2)
DTF/MA=PDC/AR=Granger Causality
® Expose distinct interaction aspects when N>2




DTF=PDC

Granger Causality

N=2 time series



lllustration of the Differences

DTF/MA PDC/AR
Information
a;iHi(w) 7 Ay(@)
() = WS lTCij(CU) - H 1
‘/ ; (Cl)) W l(a)) \/a] (CU)Z W C[J(CU)

(Takahashi et al, 2010)



The Connectivity Problem

RN

Detection Characterization

Prevalent Paradigm

Amount of Correlation/Coherence



Spectra [a.u.]

Toy Example |

DTF=PDC=Granger Causality

2 time series

o M M O © =
| I R E Y B S—

2
Coh

Normalized Fregq. (x-axis)

0
0 .5



Spectra [a.u.]

Frequency

DTF=PDC
(Granger Causality)



ressonant
filter

2
Coh

o N B o 0 =
I B S—

\zPDC\

—

Spectra [a.u.]

Frequency



Toy Example |l

DTF+PDC

(More than 2 time series)
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DTF

Sum-up of Influences Direct and Indirect



Toy Model Il

(x 100)




Resonant Oscillator

\
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DTF and PDC

*Allow focusing on dynamic details of connections

*Work when coherence does not

*Give directional signal-flow information

*Are complementary for more than 2 time series
*PDC represents immediate adjacent structure
descriptions
*DTF collects direct + indirect signal pathway flows



Effective Connectivity

the influence one neural system exerts over another

from Latin effectivus, from efficere 'accomplish'’

Functional Connectivity

temporal correlations between remote neurophysiological events

(Friston, 1994)

from Latin functionem (nominative functio) "performance,

* relating to the way in which something works or operates: there are important functional differences between
left and rioht brain.



Effective/Functional Classification

needs

UPGRADING!



Proposal

Link Centered Description

TABLE 13.1

Key to the relationship between connectivity
quantifiers and its classification

Direct Indirect

Active PDC #0 PDC =0and DTF # 0

Inactive PDC = () DTF = ()

Baccald LA, Sameshima K (2014b) Multivariate time series
brain connectivity: a sum up. In: Sameshima K, Baccala
LA (eds) Methods in brain connectivity inference through

multivariates time series analysis. Boca Raton: CRC
Press, in press



DTF=PDC=Granger Causality

2 time series

Granger Causality

/ > 2 time series \

Granger Granger
Connectivity Influenciability
v v

PDC DTF



Which one to use!?

PDC if link description is desired

DTF  to sum-up the net effect
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Luiz A. Baccald, Member; IE

b bjective: To present a unified
tion of the frequency dependent asymptotic behaviour of the

"elecommunications and Control Department, Escola Poltécnica,

2 three m: s of directed transfer function (DTF). Methods:
Bioinformatics Graduate Program, synt results (proved in an extended Appendix) is
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Institute of Mathematics and Statistics, and

example are asymptotically norm:
“Department of Radiology and Oncology, Faculdade de Medicina, yhen i zero. Undy
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adopted. Significance: Together
: ) : cted coherence (PDC) results, this
This paper presents a unified mathematical derivation oo

7 hynds up connectivity Inference tools for a class of
of the asymptotic behaviour of the three main ducall domain connectivity estimators.

forms of partial directed coherence (PDC). Numerical

?Yamylesam used to contrast PDC, gPDC (generalx/:-d [Index Terms—DTF asymptotics, partial directed coherence,
PDC) and iPDC (information PDC) as to meaning DTF connectivity

and applicability and, more importantly, to show their

essential statistical equivalence insofar as connectivity 1. INTRODUCTION

inference is concerned. The recent realization of the potential role of connectivity
analysis as a tool for understanding how the brain works has
given rise to the appearance of a huge number of connectivity
estimation methods that employ observed neurophysiological
signals [1]-[6]. One common limitation of most methods is
that their statistical behaviour is poorly understood and the
existence of connectivity is often done without clear rigorous
justification. One exception to-this
sented by [7] which discusses the rig
of partial directed coherence (PDC) [8] and its immediate
frequency domain, it closely reflects the idea of Granger variants [9], [10].

Here we carry out the statistical characterization along the
lines presented in (7] for directed transfer function (DTF) [11],
a frequency domain characterization of connectivity, that can
be thought as a factorization of the coherence between pairs
of observed time series [8].

PDC and DTF constitute dual connectivity description con-
cepts. PDC captures active immediate directional coupling
between structures whereas DTF portrays the existence of
directional signal propagation even if it is only indirect, i
when signals may travel through intermediate structures rather
than through an immediate direct causal influence path [12],
Thus DTF reflects signal *reachability’ in a graph theoretical

1. Introduction

Partial directed coherence (PDC), a multivariat
series technique obtained from the factorization of
partial coherence [1], has become popular for evaluating
the connectivity between neural structures. In the

causality [2], i.e. a time series x(k) is Granger-caused by
u(k) only if knowledge of y(k)'s past proves helpful in
predicting x(k), and it is, as such, an important measure
given that many neuroscience research scenarios, such
as sleep staging [3], have long been linked to typical
neuroelectric oscillatory behaviour.

PDC has been finding increasing applications [4-6],
most of which have been carried out by comparing
sample connectivities between groups classified as
presenting some known disorder against normal controls.
Only recently have objective trial-by-trial criteria appeared
that allow the evaluation of PDC’s estimator asymptotic
properties. This is the case with Takahashi et al. [7), who
confirmed a previously available connectivity hypothesis ” Clopipr o U
test [8] by the addition of hitherto unavailable PDC Princeton, NJ 08540, USA. emmitiakainshiyd@gmaiicom
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¢ whereas PDC is akin to an adjacency matrix description

[13].

Much like PDC, DTF has given rise to a number of variants,
that were deemed appropriate to different situations, whose
discussion from a historical perspective is provided by their

authors in [14]. Since DTF’s introduction, we examined two
of its varianis (a) directed coherence (DC) [15] which is
DTF's scale invariant form (and dual to generalized PDC
(¢PDC) [9]) and (b) information DTF (1DTF) which is an
information theoreticgeneralization of DTF we introduced,

to information PDC (1PDC), both of which provide
accurate effect size information of the connectivity strength,
ie. of the amount of information flow [10], [16], [17]

Here we derive and illustrate inference results for the latter
DTF forms from a unified perspective closely paralleling the
inference results in [7] which were further illustrated in [18]
‘The importance of accurate asymptotics for DTF is that jointly
DTF and PDC allow extending the current effective/functional
classification connectivity concepts to a more accurate general
and informative context [19], [20].

After briefly reviewing DTF's formulations (Sec. 1) to-
gether with a summary of the unified asymptotic results (Sec.
D), numerical illustrations (Sec. V) discuss some implica-
tions of the results that are further elaborated in Sec. V.
For clarity, mathematical details are left to the Appendix
whose implementation is to appear in the next release of
the AsympPDC package [7] which may be downloaded from
htp://wwwles.poli.usp.bri~baccala/pdc/dtf huml together with
data and scripts used in the examples contained here.

II. BACKGROUND

The departure point for defining the present DTF variants
is an adequately fitted multivariate autoregressive time series

(ie. vector time series x(n) made up by xi(n), k= I.....K)
model B
x(n) = Y A()x(n—1)+w(n) (1)
=

where w(n) stands for a zero mean white innovations process
of with X, = (6] as its covariance matrix and p is the
model order. The a;;(1) coefficients composing each A(1)
maurix describe the lagged effect of the jth on the i-th
series, wherefrom one can also define a frequency domain
representation of (1) via the A(4) matrix whose entries are
given

»
1= X ay(le P4 if i= j
=)

Characterization

Host of Options

PDC/DTF

rPDC

GRANGER TIME DOMAIN MEASURES

Merely different units?



Connection Detection

Ho: No PDC (DTF) exists at / can be rejected at

Connection Characterization (if Hois rejected)

PDC (DTF) ~ Normally distributed



Information Flow
Interpretation

DTF/MA PDC/AR
Information
0;iHi(w) - 7 Ay(@)
() = WS ZRU(CU) - H 1
J ; (CO) W z(a)) Ja] (CO)E W CIJ(CU)

(Takahashi et al, 2010)



Diagnostics and
Interpretation

- Reliance on model fitting

Model quality appraisal

- “truthfulness” needs including “all” variables of interest

Implications on model size and signal length

- Limited to ‘linear models’

(as is correlation)
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Some Developments
at EMBC 2016

® Time Variant Linear Models for Short Segment ERPs
® Nonlinear Connectivity (Symposium)



Program Overview

Morning

*Introduction and Overview - L.A. Baccala

+ Applications of Granger Causality to Neuroscience - Mingzhou Ding
*Statistical and Software Applications - K. Sameshima

*Power User Applications - L. Astolfi

Afternoon

Data Analysis Challenges
Challenge Resolution and Discussion
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