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Abstract
This manual describes AsympPDC Package version 2.0b user level functionality aimed at

inferring multivariate time series connectivity structure via Partial Directed Coherence (PDC)
(and its variants gPDC and iPDC) via frequency domain null hypothesis tests that employ PDC’s
asymptotic statistics. The package also provides PDC confidence limits when connectivity cannot
be rejected. Eleven examples from the literature illustrate its functionalities and capabilities.
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Introduction

1.1 Preliminaries
This is a AsympPDC Package version 2.0b release, prepared for accompanying the book “Methods
in Brain Connectivity Inference through Multivariate Time Series Analysis”, of an implementa-
tion of asymptotic statistics for partial directed coherence (PDC) that allows frequency domain
Granger causality estimation via multivariate time-series vector autoregressive modeling by test-
ing for the null hypothesis of significant PDC via its computed asymptotic statistical properties
[Takahashi et al., 2007, 2010, de Brito et al., 2010]. Present release only MATLAB code is pro-
vided. A future release including a Python implementation is planned.

This documentation describes the basic package organization and aims at allowing data an-
alysts to quickly access the present connectivity inference methods for application on their own
data sets. Didactic examples are included in the package to illustrate its use and functionality
together with the nature of possible results.

This user manual is organized as follows: after the present brief introduction, Section 1.2
discusses installation and legal aspects. This is followed by a description of the package’s orga-
nization (Section 2.1), its main routines and folder structure. Note that Section 2.1 presents a
brief list of the illustrations provided in the package. Section 2.1 describes a template file whose
comments point to details of how to call each function while Section 3.1 portrays the results of
running one of the provided examples. Finally Section 3.2 lists known issues.

To provide expedited access to the present computational methods, this release does not
provide a user friendly interface environment of the type often provided by real world professional
data analysis packages. This is made up by providing the full integrated code for PDC estimation
and null hypothesis testing. In doing so, our goal is to provide tools to explain/clarify the key
concepts, PDC’s advantages and limitations and (2) to give data analysts the chance to experiment
the methods on their own data in a way that they can incorporate the code in their own analysis
procedures.

1.2 Installation and Legal Aspects

Installation and Requirements
The compressed package distribution file is provided in the book accompanying CD-ROM, asymp-
pdc.zip, or can be downloaded from PDC website.1 After uncompressing it, copy/transfer the
folder structure to your working folder. Then set MATLAB path access to that folder and sub-
folders using File Set Path... command from MATLAB Desktop window. The asymppdc main
folder contains three subfolders, routines, examples and supporting, and a pair of files, a

1http://www.lcs.poli.usp.br/∼baccala/pdc/
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Chapter 1. Introduction

comprehensive template m-file for PDC connectivity analysis, pdc analysis template.m (see
Appendix A), and a readme.txt file.

The AsympPDC package has been tested under Windows, Mac OS X and Linux-Ubuntu
platforms running MATLAB version 7.1 and higher. The package uses some routines from Signal
Processing, Statistics, and Control System toolboxes.

License and Distribution
This release of the AsympPDC package is a MATLAB version of PDC connectivity tools for time
series analysis and its content (not including supporting folder’s codes) is released as open
source code under the GNU general public license version 3.

MATLAB© is a product from Mathworks Inc™.

Disclaimer
The software package is supplied “as is” and all use is at your own risk. The authors disclaim
all warranties of any kind, either express or implied, as to the software package, including, but
not limited to, implied warranties of fitness for a particular purpose, merchantability or non-
infringement of proprietary rights. Neither this agreement nor any documentation furnished under
it is intended to express or imply any warranty that the operation of the software package will be
error-free.

Under no circumstances shall the authors of the software be liable to any user for direct,
indirect, incidental, consequential, special, or exemplary damages, arising from the software, or
user’s use or misuse of the software. Such limitation of liability shall apply whether the damages
arise from the use or misuse of the data provided or errors of the softwares.
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Implementation

2.1 General Organization
A short description of folder (module) content follows.

Routines Module
There are four main routine types: (1) the MVAR module itself that estimates the VAR model
via four algorithm options and the choice of different model order selection criteria; (2) a time
domain Granger causality test (GCT) implementation that includes an instantaneous Granger
causality test (IGCT); (3) the PDC and asymptotic statistics calculation routine (asymp pdc.m)
implementing all three PDC formulations and finally (4) a basic plotting routine, xplot, that
provides graphic representation of the asymp pdc routine results.

These modules and auxiliary m-files are briefly described:
Module and routine descriptions

• A to f.m
Computes A(f) matrix in the frequency domain.

• arfitcaps.m
If available, the ARfit package can be used as an alternative for the natively implemented
VAR estimation algorithms. The ARfit package was developed by Tapio Schneider and
Arnold Neumaier. Please visit Tapio Schneider’s site. For further information about ARfit
see [Scheneider and Neumaier, 2001].
arfitcaps.m is capsule routine for calling the arfit.m, which is part of the “ARfit: Multi-
variate Autoregressive Model Fitting” package. If you would like use ARfit algorithm for
VAR model estimation, you can get it at http://www.clidyn.ethz.ch/arfit/index.htmll
Please also read the allied license term before using it.

• asymp pdc.m
Computes the PDC connectivity measure and its asymptotic statistics taking as input ar-
guments the time series.

• cmlsm.m
VAR least squares estimator.

• coh alg.m
Calculates the cross coherence functions from spectral density matrix.

• gct alg.m
Performs the Granger causality test, including instantaneous causality.
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Chapter 2. Implementation

• getCij.m
Extracts the (i,j) index variable structure from the c structure that results from asymp pdc
and employs the following syntax

Cij(f) = getCij(c,i,j,nFreq)

c is a structured variable that stands for either c.pdc, c.th, c.ic1, c.ic2, c.SS, c.coh, or
p.pdc th, as returned by asymp pdc.m and pdc alg.m.

• mcarns.m
Calculates the coefficients of vector auto-regressive matrix using the Nuttall-Strand algo-
rithm (a generalization of single channel harmonic method).

• mcarvm.m
Calculates the coefficients of vector auto-regressive matrix using the Vieira-Morf algorithm,
a generalization of single-channel geometric method.

• mvar.m
Estimates the VAR matrix based on algorithm choice and model order selection criteria

• mvarresidue.m
Residues test for whiteness.

• pdc alg.m
Computes partial directed coherence measure from the time series given by “options”. If
you want just to calculate PDC measure, and the asymptotic statistic this is probably the
most useful routine

• ss alg.m
Calculates the spectral density function (SS) given the auto-regressive matrix, A, and co-
variance residue.

• standardize.m
Data transformation by standardization of time series imposing zero mean and unit standard-
deviation.

• xplot.m
Connectivity plot in matrix layout with power spectra or PDC along the main diagonal.

• xplot title.m
This is an auxiliary routine that can be used with xplot.m to put a text title above the
matrix layout plot.

Examples Module
The folder examples contains 11 examples borrowed from the literature, four auxiliary m-files
used by the examples (example analysis parameters.m, example pre processing.m, ex-
ample mvar estimation.m, and example pdc analysis.m), and a batch file that runs all
the examples in batch-mode (run all examples.m) for operating system compatibility testing
purposes.

Those curious about the performance and characteristics of PDC, gPDC and iPDC, play along
with the examples in the folder, read the comments and try alternatives.

The examples presented in this package have been borrowed from Andrews and Herzberg
[1985]), Sunspot-Melanoma 1936-1972 series, and from the literature, Baccalá and Sameshima
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2.1. General Organization

[2001a], Baccalá and Sameshima [2001b], Schelter et al. [2005], Schelter et al. [2006], Schelter
et al. [2009], Guo et al. [2008], Gourévitch et al. [2006], and an extended variant of Winterhalder
et al. [2005].

All examples can be run in batch to verify if all routines and necessary toolboxes are available
and MATLAB path has been set by running the example batch command

>>run all examples

Supporting Module
Mostly comprised of user-contributed MATLAB code:

• boundedline.m

• shadedErrorBar.m

• shadedplot.m

• subplot2.m
One can control the subplots spacing by editing the kspacescale parameter in subplot2.m
routine. Try varying it in [0 1] range.

• suplabel.m

• suptitle.m

• tilefig.m and tilefigs.m
Figure tiling routines for organizing the visualization of several open figures. See for instance
andrews herzberg.m, the Sunspot-Melanoma example.

PDC Analysis Getting Started Template File
The pdc analysis template.m file is meant to be self-explanatory. Please read and play with
it. The file contains a description of how to interconnect the various routines to make the analysis
of one’s data. The pdc analysis template.m file is listed in Appendix 5 for convenience.
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Examples

3.1 Examples from literature

Sunspot-Melanoma 1936-1972 Series: andrews herzberg.m

This is an interesting very short data set, 37 data points in all (see Figures 3.1 and 3.2), which
can be used to investigate the interdependence between the cycles of solar activity given by the
annual sunspot number and the epidemiological record of the number annual melanoma cases in
the state of Connecticut from 1936 to 1972. The data are provided in the sunmeladat.m file
contained in the extras directory.
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Figure 3.1: Detrended Sunspot-Melanoma 1936-1972 Series .

Original PDC estimation of detrended but not standardized times series yields the result
depicted in Figure 3.3.

Using generalized PDC for α = 1% leads to the results in Figure 3.4 where the apparent
contradictory results from Figure 3.3 become resolved.
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Melanoma & Sunspot: Standardized series
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Figure 3.2: Standardized Sunspot-Melanoma series plotting and corresponding normalized cross-
correlation function. Note that the peak of cross-correlation of 2 years lag led by the sun’s activity.

Checking asympPDC package log output on Command Window in more detail:

======================================================================
Andrews and Herzberg’s Sunspot and Melanoma 1936-1972 Data

Sunspot --> Melanoma or other way?
======================================================================

Setting up default analysis parameters.
Running simple data pre-processing routines.
Time series were detrended.
Running MVAR estimation and GCT analysis routines.
maxOrder limited to 30
IP=1 vaic=418.156614
IP=2 vaic=415.350982
IP=3 vaic=409.454496
IP=4 vaic=411.220477

Number of channels = 2 with 37 data points; MAR model order = 3.
----------------------------------------------------------------------

MVAR Residues test for whiteness
======================================================================
Good MAR model fitting! Residues white noise hypothesis NOT rejected.
Pass =

0.0250
st =

85.8928
----------------------------------------------------------------------

GRANGER CAUSALITY TEST
======================================================================
Connectivity matrix:
Tr_gct =

-1 0
1 -1

Granger causality test p-values:
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pValue_gct =
-1.0000 0.0796
0.0000 -1.0000

----------------------------------------------------------------------
INSTANTANEOUS GRANGER CAUSALITY TEST

======================================================================
Instantaneous connectivity matrix:
Tr_igct =

-1 0
0 -1

Instantaneous Granger causality test p-values:
pValue_igct =

-1.0000 0.0762
0.0762 -1.0000

>>>> Instantaneous Granger causality NOT detected.
(...)
%==========================================================================

End of Sunspot-Melanoma series analysis example.
%==========================================================================

Frequency

|P
D

C
(

)|2 0

0.2

0.4

0.6

0.8

1

Su
ns

po
t

 0         .5
0

0.2

0.4

0.6

0.8

1

M
el

an
om

a

Sunspot

      
0

0.2

0.4

0.6

0.8

1

PDC (  = 1%)

0

0.2

0.4

0.6

0.8

1

Sp
ec

tra
 [a

.u
.]

Melanoma

Figure 3.3: Matrix layout plot of squared original PDC ([Baccalá and Sameshima, 2001a]) cal-
culated from detrended but nonstandardized sunspot and melanoma series. The direction of
influence is from column to row variables. Observe that in this case the magnitude of PDC from
Melanoma→ Sunspot is high, close to 1, yet as the green line indicates, PDC is not significant.
In the reverse direction, i. e. Sunspot→Melanoma even though PDC’s magnitude seems almost
zero, one can see a red line at the lower frequencies indicating significant connectivity in this
direction. The gray lines depict coherence function, a symmetric measure.

baccala2001a ex3.m
Example 3 of Baccalá and Sameshima [2001a] (pag.468), a five-dimensional VAR[3] with feedback
between x4 and x5. Note that squared original PDC is plotted on the main diagonal instead of
usual power spectra (see Figure 3.5).
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baccala2001a ex4.m

Example 4 of Baccalá and Sameshima [2001a], a five-dimensional VAR[2] also with feedback
between x4 and x5. The squared original PDC is also plotted along the main diagonal (Figure
3.6).

Frequency

| gPD
C

(
)|2 0

0.2

0.4

0.6

0.8

1
Su

ns
po

t

 0         .5
0

0.2

0.4

0.6

0.8

1

M
el

an
om

a

Sunspot

      
0

0.2

0.4

0.6

0.8

1

gPDC (  = 1%)

0

0.2

0.4

0.6

0.8

1

Sp
ec

tra
 [a

.u
.]

Melanoma

Figure 3.4: Matrix layout plot of squared generalized PDC ([Baccalá and Sameshima, 2007])
estimates of the same sunspot and melanoma series of Figure 3.3. Now one observes that
|gPDC(f)|2 < 0.3 for the Melanoma to Sunspot activity, but more importantly it is not sta-
tistically significant. In the reverse direction, Sunspot → Melanoma now reveals a clear picture
of Sun’s activity onto the number of melanoma cases, with a peak at the lower frequency range,
which correponds to approximately 11-year cycle indicating significant (red line) connectivity in
this direction. In the gPDC plots, the black dashed-line indicates the 1% significance level, and
the pair of blue dashed-lines the 99% confidence interval of the significant range of gPDC.
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Figure 3.5: Squared PDC estimates of baccala2001a ex3.m simulation.
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Figure 3.6: Squared PDC estimates of baccala2001a ex4.m simulation.
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Figure 3.7: Squared PDC estimates of baccala2001a ex5.m simulation.

baccala2001a ex5.m

Example 5 of Baccalá and Sameshima [2001a] is a slight variation of previous example, now
with loop close from x5 and x1. A pair of figures are generated, first, Figure 3.7, with stan-
dard y-axis scale [0 1] and second, Figure 3.8, using colored rescaling plots as explained in
pdc analysis template.m.

The range of PDC and coherence is from [01], but maximum peak amplitude may be small
(< .1), or even smaller, < .01, so that in these cases it might be interesting to plot PDC at finer
y-axis scale. If flgColor not equal zero is chosen, the off-diagonal plottings use white-background
for full-scale [0 1] y-axis, while light-blue-background fills [0 .1] scale, or more correctly [.01 .1] and
light-purple-background shows very fine detail of small, [0 .01] range y-axis,usually not significant
PDCs. Edit example m-file and try flgColor = 0 or 1, or both [0 1]. The y-axis scale is controled
by flgScale parameters. For detailed options, issue help xplot command.
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Figure 3.8: Rescaled plotting of Figure 3.7.
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Figure 3.9: Outcome of a baccala2001b.m simulation.

baccala2001b.m

A 7-dimensional VAR[2] model with loop and feedback from Baccalá and Sameshima [2001b],
|gPDC|2 calculation. Compare the results of Granger Causality Test listed on MATLAB Com-
mand Window with gPDC matrix layout plotted results. As this is an analysis of linear model
with quite large amount of data, 5000 data points, the outcomes from GCT (in time domain)
and gPDC (in frequency domain) should agree fairly well. Note that the confidence intervals of
significant |gPDC|2 are very tight. Observe that the processes x6 and x7 are isolated from other
variables, however if the simulation is repeated many times you might see some false-positive
connectivity occurrences (with approximately at the rate of 1%, which is the significance level
chosen for this example).
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Figure 3.10: Simulation output of gourevitch2006 model2.m

gourevitch2006 model2.m
This example is from Gourévitch et al. [2006], a linear bivariate model with bidirectional influence
and common source. Each process has peak of power spectrum at different frequencies. Due to
common source influence, significant instantaneous Granger causality is detected between them.
Check the Command Window log output.

guo2008 linear.m
This is an example from Guo et al. [2008], a five-dimensional VAR[3] process modified from
a version presented in Baccalá and Sameshima [2001a], in which was added a large common
exogenous inputs to all variables. The exogenous inputs introduce large common variance that
overpower the magnitude of directed interactions. As you may notice from Command Window
output, there are significant instantaneous Granger causality between all pair of variables. Due
to the large common exogenous white noise often one may see false-positive and false-negative
connectivity in some simulations, which will also be dependent on your choice of significance level.

One immediately sees that the PDC, Figure 3.11, or gPDC, Figure 3.12, do not resemble PDC
plot in Fig.1 of Guo et al. [2008]. Our best guess is that Guo and colleagues used an incorrect
PDC estimator. Actually you may also notice that our PDC and gPDC estimates are very similar
to PGC shown by Guo et al. [2008].

In all three PDC formulations, the significant PDC frequency range is similar. It is important
fo stress that iPDC gives a measure of size effect, which is very small in this examples due to the
large common exogenous inputs. Even so iPDC is significant in the same frequency range as PDC
and gPDC. See Figure 3.13. The same figure can be seen rescaled in Figure 3.14.

So we must conclude that the statement by Guo and collaborators that PDC can not uncover
the connectivity pattern in large common noise does hold.

schelter2005.m
Five-dimensional VAR[4]-process Eq. (5) example from Schelter et al. [2005].

The x4 power spectrum and |gπ2,4|2 of our simulation, Figure 3.15, differ significantly from
Schelter et al. [2005] ’s results. Our guess is that Schelter et al. may have used slightly different
parameters from what they stated in Eq. 5 in Schelter et al. [2005].
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3.1. Examples from literature

Frequency

|P
D

C
(

)|2

0

0.5

1

x 1

      
0

0.5

1

x 2

      
0

0.5

1

x 3

      
0

0.5

1
x 4

 0         .5
0

0.5

1

x 5

x1

      
0

0.5

1

0

0.5

1

Sp
ec

tra
 [a

.u
.]

      
0

0.5

1

      
0

0.5

1

      
0

0.5

1

x2

      
0

0.5

1

      
0

0.5

1

0

0.5

1

      
0

0.5

1

      
0

0.5

1

x3

      
0

0.5

1

      
0

0.5

1

      
0

0.5

1

0

0.5

1

      
0

0.5

1

x4

      
0

0.5

1

      
0

0.5

1

      
0

0.5

1

      
0

0.5

1

PDC (  = 1%)

0

0.5

1

x5

Figure 3.11: Simulation |PDC|2 output of guo2008 linear.m
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Figure 3.12: |gPDC|2 estimates, without confidence interval, using the same data set of Fig. 3.11
given by guo2008 linear.m. Note that for this example PDC and gPDC estimates are very
similar.

Note that, for linear model with balanced innovation, the maximum of gPDC estimates is
roughly proportional to the autoregressive model coefficients. As we are plotting squared gPDC,
the amplitude is proportional to the square of coefficient.

schelter2006.m

A 5-dimensional VAR[4] model example presented by Schelter et al. [2006]. Comparing this plot
with Fig.3 in Schelter et al. [2006], one sees that their is PDC amplitude plots, while this example
shows squared PDC.
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Chapter 3. Examples
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Figure 3.13: |iPDC|2 estimates using the same data set of Fig. 3.11, which depicts very small
amplitude influences and reflects actual size effect of interactions in the frequency domain.
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Figure 3.14: Rescaled plots of Figure 3.13.

schelter2009 vap1.m
A 5-dimensional VAR[3] process example presented by Schelter et al. [2009]. The example shows
squared gPDC plots, without power spectra on main diagonal. Observe in Figure that there are
two false-positive connections detection from x1 → x5 and x3 → x5 with very small amplitude.
Using color-rescaling, Figure 3.17, one sees that the peaks of false-positive squared gPDC are
smaller than 0.01.

winterhalder2005 variant.m
Expanded version of three random independent processes presented by Winterhalder et al. [2005],
here with seven variables using unbalanced innovation noises with following values: σ1 = 500;σ2 =
1;σ3 = 500; σ4 = 1;σ5 = 1;σ6 = 1;σ7 = 1. Figure 3.19 shows PDC estimates, with some non-
significant large values. The squared gPDC outcome is shown in Figure 3.20.
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3.2. Known issues
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Figure 3.15: |PDC|2 estimate of a schelter2005.m simulation. Note log-scale power spectra plots
on main diagonal.
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Figure 3.16: |PDC|2 plot of schelter2006.m simulation.

3.2 Known issues
1. The x-axis scaling plot label does not work for any other than normalized unit frequency,

i.e. fs = 1.

2. The asymp pdc.m routine as provided is not optimized. Setting alpha = 0, provides PDC
without its asymptotic statistics, and is thus much faster.

3. A known issue among MATLAB subplot users is that any figure reformatting with subplot
requires replotting of everyone of its components which accounts for the slow speed of the
xplot routine.

Please help us by referencing your use of this package and by reporting any bugs you find.
You may do so by email to ksameshi@usp.br or baccala@lcs.poli.usp.br.
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Chapter 3. Examples
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Figure 3.17: |gPDC|2 plot of schelter2009 vap1 gPDC.m simulation with 99% confidence interval
plots. Ocasionally one might see some false-positive connectivities inference in eventual simula-
tions, which could be seen in more detail using a rescaled figure, such as Figure 3.18 (not observed
in this simulation).
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Figure 3.18: Rescaled |gPDC|2 plot of Figure 3.17.

16



3.2. Known issues

Frequency

|P
D

C
(

)|2

PDC (  = 1%) Independent Gaussian noises: 1= 3=500; 2 = 4 = 5 = 1

0
0.5

1

x7

      
0

0.5
1       
0

0.5
1       
0

0.5
1       
0

0.5
1       
0

0.5
1       
0

0.5
1

      
0

0.5
1

x6

0
0.5

1       
0

0.5
1       
0

0.5
1       
0

0.5
1       
0

0.5
1       
0

0.5
1

      
0

0.5
1

x5

      
0

0.5
1
0

0.5
1       
0

0.5
1       
0

0.5
1       
0

0.5
1       
0

0.5
1

      
0

0.5
1

x4

      
0

0.5
1       
0

0.5
1
0

0.5
1       
0

0.5
1       
0

0.5
1       
0

0.5
1

      
0

0.5
1

x3

      
0

0.5
1       
0

0.5
1       
0

0.5
1
0

0.5
1       
0

0.5
1       
0

0.5
1

      
0

0.5
1

x2

      
0

0.5
1       
0

0.5
1       
0

0.5
1       
0

0.5
1
0

0.5
1

Sp
ec

tra
 [a

.u
.]

      
0

0.5
1

 0         .5
0

0.5
1

x 7

x1

      
0

0.5
1

x 6

      
0

0.5
1

x 5

      
0

0.5
1

x 4

      
0

0.5
1

x 3
      

0
0.5

1

x 2

PDC (  = 1%)

0
0.5

1

x 1

Figure 3.19: Squared PDC estimates for seven independent random processes with unbalanced
innovation noises. One immediately sees that PDC estimates from processes with small innova-
tion noises toward large one may show very high but nonsignificant values. The normalization
introduced with gPDC definition resolves this issue (See Figure 3.20.)
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Figure 3.20: Squared gPDC estimates for seven independent random processes with unbalanced
innovation noises.
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Appendix

PDC analysis template.m listing

1 %PDC analysis getting started template file
2 %
3 % Edit this file to analyze your data. You might want to choose analysis
4 % parameters followed by comment containing "<***>". Check bellow.
5 %
6 % Some important input and output parameters and variables:
7 % input:
8 % u - data in columns
9 % fs - Sampling frequency

10 % maxIP - externally defined maximum IP
11 % alg - for algorithm (1: Nutall-Strand),(2: mlsm) ,
12 % (3: Vieira Morf), (4: ARfit)
13 % criterion - for AR order selection =>
14 % 1: AIC; 2: Hanna-Quinn; 3: Schwartz;
15 % 4: FPE, 5: fixed order in MaxIP
16 % alpha - PDC test significance level
17 %
18 % output:
19 % c.pdc - original/generalized/informational PDC
20 % c.th - threshold level by Patnaik approximation
21 % c.pdc_th - above threshold pdc values otherwise equal NaN
22 % c.ic1,c.ic2 - superior and inferior confidence interval
23 % c.p - VAR model order
24 % c.SS - Power spectrum
25 % c.coh - coherece function
26
27
28 %===========================#
29 % Times series for analysis /
30 %===========================#
31 % u - data in columns.
32 % The variable u must contain the time series
33 % If flgExample=1 the template file will analyze a
34 % 5 variables Gaussian independent noises.
35
36 format compact
37 clear all; clc
38
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Chapter 5. Appendix

39 % Choose Example 1 == Five independent random variables model
40 % 2 == Sunspot-melanoma time series
41 % 3 == Baccala & Sameshima (2001) 5 variables linear model
42 % 4 == Takahashi(2009) Thesis' example model
43 flgExample=2;
44
45 disp('======================================================================');
46 disp('============= PDC analysis getting started template ==================')
47 disp('======================================================================');
48
49 switch flgExample
50 case 1,
51 u=randn(2000,5); %<***> Example (1)
52 disp(' Random Independent Process with 5 variables')
53 disp('======================================================================');
54
55 case 2
56 u=sunmeladat([4 3]); %<***> Example (2)
57 disp(' Andrews and Herzberg''s Sunspot and Melanoma Example');
58 disp(' Sunspot --> Melanoma or other way?');
59 disp('======================================================================');
60 case 3
61 u=baccala2001a_ex5data(200);
62 case 4,
63 u=takahashi_thesis_dat(200);
64 otherwise
65 error('Wrong example selection.')
66 end;
67
68 fs = 1; %<***> Sampling frequency
69
70 [nSegLength,nChannels]=size(u);
71 if nSegLength < nChannels, error('The data might be transposed.'); end;
72
73 %===========================#
74 % Channel identification /
75 %===========================#
76
77 switch flgExample
78 case 1,
79 chLabels = {'x_1';'x_2';'x_3';'x_4';'x_5'}; %<***> Example (1)
80 strTitle2 = 'Five independent Gaussian noises '; %Title info
81 case 2
82 chLabels = {'Sunspot';'Melanoma'}; %<***> Example (2)
83 strTitle2 = 'Sunspot & Melanoma 1936-1972 ';
84 case 3,
85 chLabels = []; %<***> Example (3)
86 strTitle2 = 'Five variables Baccal?+Sameshima(2001) examples ';
87 case 4,
88 chLabels = {'X'; 'Y'; 'Z'}; % Takahashi thesis example
89 strTitle2 = 'Takahashi 2008 (Thesis) example';
90 end;
91
92 flgLabels = ¬isempty(chLabels);
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93 if flgLabels,
94 if nChannels 6= max(size(chLabels))
95 error('Numbers of labels and channels do not match.')
96 end;
97 end;
98
99 %===========================#

100 % Action flags /
101 %===========================#
102 flgDetrend = 1; %<***> Usually it's recommended to detrend the time series.
103
104 flgStandardize = 1; %<***> For PDCn estimation standardization has no effect.
105
106 if flgStandardize,
107 disp('Be aware that the data standardization does not affect the generalized')
108 disp(' PDC estimates nor its statistics results, so that data standardization')
109 disp(' is not necessary.')
110 end;
111
112 %===========================#
113 % Analysis parameters /
114 %===========================#
115 nFreqs = 128; %<***> number of points on frequency scale;
116 % use either 64 or 128.
117
118 metric = 'euc';
119 % metric 'euc' - Euclidean -> original PDC;
120 % 'diag' - diagonal -> gPDC;
121 % 'info' - informational -> iPDC;
122
123 maxIP = 30; % maxIP - externally defined maximum IP %<***>
124
125 %===========================#
126 % MAR algorithm /
127 %===========================#
128 % Choose one of algorithm for MAR estimation
129 % alg - for algorithm (1: Nutall-Strand),(2: mlsm) ,
130 % (3: Vieira Morf), (4: QR artfit)
131 alg = 1; %<***> Nuttall-Strand (alg=1) algorithm, it seems to be a good
132 % and robust method.
133
134 %============================#
135 %MAR order selection criteria/
136 %============================#
137 % criterion - for AR order choice
138 % 1: AIC; 2: Hanna-Quinn; 3: Schwartz;
139 % 4: FPE, 5: fixed order in MaxIP
140 criterion = 1; %<***> AIC, Akaike information criterion (Our preferred one)
141
142 %==================
143 alpha = 0.01; %<***> Significance level for PDC null hypothesis
144 % testing, it is usually 1% or 5%
145 %
146 % IMPORTANT: if alpha == 0, no asymptotic statistics

23



Chapter 5. Appendix

147 % calculation is performed and ASYMP_PDC (see bellow)
148 % will only returns PDC. This option is interesting
149 % if you want faster PDC calculation.
150 %
151 gct_signif = alpha; % Granger causality test significance. Choose other
152 % value if you have good reason for using different
153 % one from PDC statistical testing.
154 igct_signif = alpha; % Instantaneous Granger causality test significance level.
155 VARadequacy_signif = 0.05; % VAR model adequacy significance level
156
157 %==========================================================================
158 % Plotting options
159 %==========================================================================
160
161 % The following parameters are used by xplot routine
162
163 % [1 2 3 4 5 6 7]
164 flgPrinting = [1 1 1 3 3 0 2]; % See xplot.m for more detail.
165 % | | | | | | 7 Power Spectra (0: w/o SS; 1: Linear; 2: Log-scale)
166 % | | | | | 6 Coherence in gray line
167 % | | | | 5 Confidence interval
168 % | | | 4 Confidence interval(1:dashed;2:shaded;3:error barr
169 % | | 3 Plot PDC in red line
170 % | 2 Patnaik threshold level in black dashed-line
171 % 1 PDC in green line
172
173 flgColor = 1; % Choosing background color for exposing y-axis scale
174 % flgColor - 0: white background;
175 % 1: white [.1 1], light-blue [.01 .1], purple [0 .01]
176 % 2: white [.1 1], light-gray [.01 .1], gray [0 .01]
177 flgScale = [1 2 3];
178 % flgScale - 1: [0 1] / {if max(PDC/DTF) > 1}:[0 max(PDC/DTF)]
179 % 2: [0 {if max(PDC/DTF) > 1}:max(PDC/DTF)]/[0 1]/[0 .1]/[0 .01]
180 % based on flgMax(PDC/DTF/Threshold/CI/all)
181 % 3: [0 max(PDC/DTF/Thr/CI/all)]
182 % based on flgMax(PDC/DTF/Threshold/CI/all)
183 % Plotting option for scaling y-axis according to the max
184 % amplitude either of:
185 % PDC/DTF - max value of these measures,
186 % Thr - max Patnaik threshold,
187 % CI - max upper confidence interval value, max of
188 % TCI - max Threshold or confidence value, or
189 % all - max of all of them.
190 % chosen by flgMax for eventually exposing small values
191 % detail of PDC/DTF.
192 flgMax = 'TCI';
193 % flgMax - {'PDC'; 'DTF'; 'Thr'; 'CI'; 'TCI'; 'all'} measure used as
194 % upper limit for scale. See flgScale.
195 flgSignifColor = 3;
196 % flgSignifColor - 0: black lines
197 % 1: black / gray -> significant /not signif PDC/DTF
198 % 2: red / gray -> "
199 % 3: red / green -> "
200 % 4: red / black -> "
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201 % 5: black / green -> "
202
203 axis_scale = [0 0.50 -0.02 1.05];
204 w = fs*(0:(nFreqs-1))/2/nFreqs;
205 w_max = fs/2; %<***> Usually half of sampling frequency = Nyquist frequency
206
207
208 %==========================================================================
209 %==========================================================================
210 % ATTENTION: BELOW THIS LINE PROBABLY YOU MIGHT NOT WANT TO EDIT,
211 % UNLESS YOU WANT TO CUSTOMIZE YOUR ANALYSIS ROUTINE.
212 %==========================================================================
213
214 %==========================================================================
215 % Detrend and standardization options
216 %==========================================================================
217
218 [nChannels,nSegLength]=size(u);
219 if nChannels > nSegLength, u=u.';
220 [nChannels,nSegLength]=size(u);
221 end;
222
223 if flgDetrend,
224 for i=1:nChannels, u(i,:)=detrend(u(i,:)); end;
225 disp('Time series were detrended.');
226 end;
227
228 if flgStandardize,
229 for i=1:nChannels, u(i,:)=u(i,:)/std(u(i,:)); end;
230 disp('Time series were scale-standardized.');
231 end;
232
233
234
235 %==========================================================================
236 % Additional info for title (optional)
237
238 strTitle1 = ['PDC(' '{\alpha = ' int2str(100*alpha) '%}' ') '];
239 switch metric
240 case 'euc'
241 %NOP
242 case 'diag'
243 strTitle1 = ['g' strTitle1];
244 case 'info'
245 strTitle1 = ['i' strTitle1];
246 otherwise
247 error('Unknown metric.')
248 end;
249 % or set strTitle1 = [];
250
251 %==================
252 switch alg
253 case 1
254 disp('VAR estimation using Nutall-Strand algorithm.')
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255 case 2
256 disp('VAR estimation using least-squares estimator.')
257 case 3
258 disp('VAR estimation using Vieira-Morf algorithm.')
259 case 4
260 disp('VAR estimation using QR-Arfit algorithm.')
261 end;
262
263 %============================#
264 %MAR order selection criteria/
265 %============================#
266 switch criterion
267 case 1
268 disp('Model order selection criteria: AIC.')
269 case 2
270 disp('Model order selection criteria: Hanna-Quinn.')
271 case 3
272 disp('Model order selection criteria: Schwartz (BIC).')
273 case 4
274 disp('Model order selection criteria: FPE.')
275 case 5
276 disp('Model order selection criteria: fixed order in maxIP.')
277 otherwise
278 error('Model order selection criteria: NOT IMPLEMENTED YET.')
279 end;
280
281 %==========================================================================
282 % VAR model estimation
283 %==========================================================================
284 [IP,pf,A,pb,B,ef,eb,vaic,Vaicv] = mvar(u,maxIP,alg,criterion);
285
286
287 disp(['Number of channels = ' int2str(nChannels) ' with ' ...
288 int2str(nSegLength) ' data points; MAR model order = ' int2str(IP) '.']);
289
290 %==========================================================================
291 % Testing for adequacy of MAR model fitting through Portmanteau test
292 %==========================================================================
293 h = 20; % testing lag
294 aValueVAR = 1 - VARadequacy_signif;
295 flgPrintResults = 1;
296 [Pass,Portmanteau,st,ths]=mvarresidue(ef,nSegLength,IP,aValueVAR,h,...
297 flgPrintResults);
298
299 %==========================================================================
300 % Granger causality test (GCT) and instantaneous GCT
301 %==========================================================================
302 flgPrintResults = 1;
303 [Tr_gct, pValue_gct, Tr_igct, pValue_igct] = gct_alg(u,A,pf,gct_signif, ...
304 flgPrintResults);
305
306 %==========================================================================
307 % PDC, threshold and confidence interval calculation.
308 %==========================================================================
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309
310 % if alpha == 0, no asymptotic statistics is performed. ASYMP_PDC returns
311 % only the PDC. This option is much faster!!
312 c=asymp_pdc(u,A,pf,nFreqs,metric,alpha);
313
314 % Power spectra and coherence calculation
315 c.SS = ss_alg(A, pf, nFreqs);
316 c.coh = coh_alg(c.SS);
317
318 % Statistically significant PDC on frequency scale
319 if alpha 6= 0,
320 pdc_temp = ((abs(c.pdc)-c.th) > 0).*c.pdc + ((abs(c.pdc)-c.th) ≤ 0)*(-1);
321 pdc_temp(ind2sub(size(pdc_temp),find(pdc_temp == -1))) = NaN;
322 c.pdc_th = pdc_temp;
323 end;
324
325 %Adding further analysis details in the figure title.
326 %strTitle3 = ['[N=' int2str(nSegLength) '; IP=' int2str(c.p) ']'];
327 % or
328
329 strTitle3 = ['[N=' int2str(nSegLength) 'pts; IP=' int2str(c.p) '; ' ...
330 datestr(now) ']'];
331
332 % or leave emptied: strTitle3=[];
333
334 %==========================================================================
335 % Matrix Layout Plotting of the Analysis Results
336 %==========================================================================
337
338 w_max = fs/2;
339 strTitle = [strTitle1 strTitle2 strTitle3];
340 strWindowName = 'pdc Analysis Template Example';
341
342
343 % The following "for loop" through flgColor values, 0 and 1, and yields a
344 % pair of plots, one without and other with color scale rearrangement option.
345 % Value range of PDC and Coherence is from [0 1], but sometimes the maximum
346 % peak value is small (<0.1), or even smaller, (<.01), so in these cases it
347 % might be interesting to have a plot with finer smaller y-axis scale. The
348 % white-background plot indicates full-scale [0 1] y-axis, while
349 % light-blue-background stands for intermediate [0 .1] scaling and
350 % light-purple-background shows very fine detail of small, usually not
351 % significant PDCs. Try flgColor = 0 or 1, or both [0 1].
352
353 for kflgScale = flgScale,
354 h=figure;
355 set(h,'NumberTitle','off','MenuBar','none', ...
356 'Name', strWindowName )
357
358 [hxlabel,hylabel] = xplot(c,flgPrinting,fs,w_max,chLabels, ...
359 flgColor,kflgScale,flgMax,flgSignifColor)
360
361 % The title suplabel command should (not sure) follow the xplot routine
362 % In MacOS X, for flgPrinting(7) = 4 or 5, the main diagonal plotting
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363 % gets misaligned if suplabel with 't' option is used more than once.
364
365 [ax,hT]=suplabel( strTitle, 't' );
366 set(hT,'FontSize',8)
367 end;
368
369 tilefigs
370
371 %=========================== xplot ========================================
372 %Plot legend: Blue lines on the main diagonal = Power spectra;
373 % Black dashed lines are Patnaik threshold for pdcn;
374 % Green lines = non significant pdcn;
375 % Red lines = significant pdcn;
376 % Light-gray lines = coherence function.
377 %
378 % Notes: a.The main diagonal of matrix layout contains power spectra.
379 % b.Coherences are symmetric, e.g.,
380 % Coh_{Sunspot,Melanoma}(f) = Coh_{Melanoma,Sunspot}(f).
381 % c.pdcn is asymmetric relation, and the pdcn graphics should
382 % be read as if the flow of information is been from the
383 % x-axis variable toward y-axis variable.
384 %
385 % For sunspot and melanoma example, one only sees significant
386 % pdcn from Sunspot to Melanoma, which could eventually be
387 % interpreted that "Sunspot", or the Sun's activity
388 % modulates the incidence of melanoma.
389 %=========================== xplot ========================================
390 disp('======================================================================');
391 disp('===========pdc_ANALYSIS_TEMPLATE SUCCESSFULLY FINISHED ===============')
392 disp('======================================================================');
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