Equalization Pos-Combining with Channel Estimation and MIMO Joint Equalization Combining Receivers for Space-Time Block Coding in Frequency Selective Channels

Ivan R. S. Casella¹, Paul Jean E. Jeszensky¹ and Elvino S. Sousa²

¹ Laboratório de Comunicações e Sinais - Universidade de São Paulo – casella@lcs.poli.usp.br, pjj@lcs.poli.usp.br
² Department of Electrical and Computer Engineering – University of Toronto – es.sousa@utoronto.ca

Abstract—Recently, space-time block coding has emerged as a promising spatial transmit diversity scheme, mainly due to its simple decoding complexity. As it was initially proposed, space-time block coding was based on the assumption of flat multipath fading channel, where there is no intersymbol interference. In this paper, we investigate the performance of two different receiver proposals using space-time block coding for frequency selective fading channels. The first one, called here equalization pos-combining with channel estimation receiver, is based on the time-reverse space-time block coding proposed by Lindskog and Paulraj and it performs channel-estimation, linear combination and equalization. The second one, denoted here multiple-input multiple-output joint equalization-combining receiver, is based on the scheme presented by Meshkati and Sousa and it performs channel equalization, interference cancellation and linear combination simultaneously. Simulation results show that, increasing the signal to noise ratio, multiple-input multiple-output joint equalization-combining can outperform equalization pos-combining with channel estimation.

I. INTRODUCTION

Recently, space-time coding has been proposed to achieve transmit diversity. There are two main schemes in space-time coding: space-time trellis coding (STTC) and space-time block coding (STBC). Although STTC offers coding gain along with diversity [1], STBC has emerged as a promising spatial transmit diversity scheme due to simple decoding complexity at the receiver and for not requiring the channel state information (CSI) at the transmitter. Initially, Alamouti introduced a remarkable transmit diversity scheme in [2] that established the basis for STBC. Later, Tarokh et al. generalized STBC to an arbitrary number of transmit antennas [3], [4]. The orthogonal structure of STBC provides decoupling of signals from different antennas and presents a decoding complexity dependent only on constellation size [5].

STBC was designed on the assumption of flat multipath fading channel. However, in high data rate wireless communications, the delay spread is higher than the symbol duration, which gives rise to frequency selective propagation effects. Unlike flat fading channels, optimal design of STBC for frequency selective fading channels is very complex. In order to maintain simple decoding complexity and taking advantage of existing STBC schemes for flat fading channels, most of the works presented in the literature have treated intersymbol interference (ISI) and diversity separately, leading to suboptimal results.

One of these works is the time-reverse space-time block coding (TR-STBC) proposed by Lindskog and Paulraj in [6], that extends space-time block coding from the symbol-level to the block-level to treat frequency selective fading channels. In this approach, a data frame is serial to parallel converted and symbol mapped in two symbol streams. Each transmit symbol frame is divided in two blocks. During the first block, symbol stream 1 is transmitted from antenna 1 and symbol stream 2 is transmitted from antenna 2. In the second block, symbol stream 2 is time reversed, negated and complex conjugated before being transmitted from antenna 1 and symbol stream 1 is time reversed and complex conjugated before being transmitted from antenna 2. At the receiver, channel equalization is performed after linear combining and space-time block decoding to recover the transmit data symbols.

Another work to treat frequency selective fading channels is presented in [7]. In this work, Meshkati and Sousa presented a TR-STBC scheme in a multiple-input multiple-output (MIMO) framework and MIMO chip-equalization was used to perform channel equalization, interference cancellation and linear combination simultaneously.

In this paper, we present an equalization pos-combining with channel estimation receiver (EPCCE) based on a minimum mean square error (MMSE) TR-STBC using recursive least squares channel estimation (RLS-CEs) and recursive least squares channel equalization (RLS-CEq) and we compare its performance against a MIMO joint equalization-combining receiver at symbol-level (MIMO-JEC) based on the receiver presented in [7] and against an ideal equalization pos-combining (EPC), which performs perfect channel estimation.

The paper is organized as follows: the EPCCE is introduced in section II; the MIMO-JEC is presented in section III; simulation results are presented in section IV and finally, conclusion remarks are presented in section V.
II. EQUALIZATION POS-COMBINING WITH CHANNEL ESTIMATION

We consider that the base station employs two transmit antennas placed far enough so that their signals undergo independent fading. A given data frame is firstly serial to parallel converted and then symbol mapped into two symbol streams, \(b_1 \) and \(b_2 \), respectively. Each symbol frame is divided in two blocks. During the first block, \(b_1 \) is transmitted from antenna 1 and \(b_1 \) is transmitted from antenna 2. In the second block, \(b_2 \) is time reversed, negated and complex conjugated before being transmitted from antenna 1 and \(b_2 \) is time reversed and complex conjugated before being transmitted from antenna 2.

Assuming that the frequency selective fading channels from antenna 1 and antenna 2 are stationary during each frame and that its impulse response can be modeled as FIR filters, we can represent the channel vector from transmit antenna \(i \) to receive antenna \(j \) by:

\[
h_{ij}(t) = \sum_{k=0}^{N-1} \beta_{ij}^k \delta(n-k) ; \quad L \text{ is the number of resolvable multipath components; } \beta_{ij}^k \text{ is the complex gain of the } k \text{th multipath component of the channel from antenna } i \text{ to receive antenna } j ; \quad \delta(n) \text{ is the Kronecker delta function.}
\]

We can represent the received signal at the \(j \)th receive antenna and in the block interval by:

\[
r_{ij}^\text{block} = \sum_{i} h_{ij}(t) \cdot s_{ij}^\text{block} + v_{ij}^\text{block}
\]

Where \(s_{ij}^\text{block} = [s_{ij}^1 \cdots s_{ij}^{N_t}]^T \) is the transmitted coded stream from transmit antenna \(i \) and \(v_{ij}^\text{block} \) is the complex white Gaussian noise vector, and \(* \) represents convolution operation.

\[
s = \begin{bmatrix} s_1^1 & s_1^2 \\ s_2^1 & s_2^2 \end{bmatrix} = \begin{bmatrix} b_1 & b_2 \\ -\Gamma_{s1} b_1 & \Gamma_{s2} b_2 \end{bmatrix}
\]

Where \((j) \) is the complex conjugate operator; \(b_i \) is the symbol stream, composed by \(N_s \) symbols, from transmit antenna \(i \) given by: \(b_i = [1 \cdots \beta_{ij}^k] \) and \(\Gamma_{s1} \) is a permutation matrix \((N_t \times N_t) \) given by:

\[
\Gamma_{s1} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}
\]

We can represent the received signal at the receive antenna in block 1 and 2 in a vector notation by:

\[
\begin{bmatrix} r_1^i \\ r_2^i \end{bmatrix} = \begin{bmatrix} b_1 \\ -\Gamma_{s1} b_1 \end{bmatrix} \begin{bmatrix} \Gamma_{s1} b_1 \\ \Gamma_{s2} b_2 \end{bmatrix} + \begin{bmatrix} v_1^i \\ v_2^i \end{bmatrix}
\]

We can recover the transmit symbols by extracting \(b_1 \) and \(b_2 \), from the received signals at block 1 and block 2 using the scheme presented in [6]. Let \(x_1^i = \hat{r}_1^i \) and \(x_2^i = \hat{r}_2^i \). Combining \(x_1^i \) and \(x_2^i \) by providing perfect estimation (or trained-aided estimation) of the fading channels, we can extract the streams \(y_1 \) and \(y_2 \) using simple signal processing. Specifically, in order to obtain stream \(y_1 \), we can combine the modified received streams at block 1 and 2, \(x_1^i \) and \(x_2^i \), as follows:

\[
y_1 = \Gamma_L \cdot \hat{h}_{11} \ast x_1^i + \hat{h}_{12} \ast x_2^i
\]

Similarly, we can obtain stream \(y_2 \) by:

\[
y_2 = \Gamma_L \cdot \hat{h}_{21} \ast x_1^i - \hat{h}_{22} \ast x_2^i
\]

Where \(\hat{h}_{ij} \) are the channel estimates.

Streams \(y_1 \) and \(y_2 \) are decoupled versions of \(b_1 \) and \(b_2 \). However, it is still necessary to mitigate ISI for perfect recovery of \(b_1 \) and \(b_2 \). We can obtain an optimum weight vector, \(w_i, i = 1, 2 \), in the LS sense for appropriate channel equalization by [8]:

\[
w_i = \left(\frac{1}{N_t} \sum_{m=1}^{N_t} y_i(m) \cdot y_i(m) \right)^{-1} \left(\frac{1}{N_t} \sum_{m=1}^{N_t} y_i(m) \cdot b_i(m) \right)
\]

Where \(N_t \) is the number of training symbols available per transmit antenna; \(b_i(m) \) is the \(m \)th symbol stream in the symbol stream; \(y_i(m) = [y_1(m) \cdots y_{m-N_t+1}] \) and \(N_t \) is the length of the equalizer.

Recursive least squares (RLS) can also be used to obtain \(\hat{w}_i \), \(i = 1, 2 \). In the following, we describe briefly the algorithm (for additional information see [8]).

1. Initialize \(w_i^{(0)} = 0 \) and \(\hat{R}_2 = \sigma^2 I \)

\[
w_i^{(0)} = 0 \quad \text{and} \quad \hat{R}_2 = \sigma^2 I
\]

2. Compute \(\hat{K}_i(m) = \frac{\hat{\lambda}^i \cdot \hat{R}_2 \cdot \hat{y}(m)}{1 + \hat{\lambda}^i \cdot \hat{R}_2 \cdot \hat{y}(m)} \)

\[
\hat{R}_i(m) = \hat{\lambda}^i \cdot \left(\hat{R}_i(m) - \hat{K}_i(m) \cdot \hat{y}(m) \cdot \hat{L}_i(m) \right)
\]

Where \(\hat{R}_i \) is the inverse of the correlation matrix, \(I \) is the identity matrix, \(\sigma^2 \) is the noise variance at each receive antenna and \(\hat{\lambda} \) is the forgetting factor.
Using this procedure, we can determine the estimates \hat{b}_1 and \hat{b}_2 of the transmitted symbol streams. We can also use RLS in a similar manner to perform channel estimation before linear combining to obtain y_1 and y_2.

The method presented can be extended to an arbitrary number of received antennas. The encoding and transmission will be identical to the case of one receive antenna and for the two receive antennas case ($j=2$), the received signals in blocks 1 and 2 are given by:

$$
\begin{bmatrix}
\mathbf{r}_1^T \\
\mathbf{r}_2^T
\end{bmatrix} =
\begin{bmatrix}
\mathbf{b}_1 & \mathbf{b}_2 & 0 \\
-\Gamma_{\mathbf{h}_1} & \mathbf{h}_{12} & 0 \\
0 & -\Gamma_{\mathbf{h}_2} & \mathbf{h}_{22}
\end{bmatrix}
\begin{bmatrix}
\mathbf{h}_{11} \\
\mathbf{h}_{12} \\
\mathbf{h}_{22}
\end{bmatrix}
+
\begin{bmatrix}
\mathbf{v}_1^T \\
\mathbf{v}_2^T
\end{bmatrix}
$$

(13)

When the receiver employs two receive antennas, we can obtain stream y_1 by:

$$
y_1 = \Gamma_{\mathbf{h}_1} \cdot \hat{\mathbf{h}}_{11} \ast \mathbf{x}_1^1 + \hat{\mathbf{h}}_{12} \ast \mathbf{x}_1^2 + \Gamma_{\mathbf{h}_2} \cdot \hat{\mathbf{h}}_{12} \ast \mathbf{x}_2^1 + \hat{\mathbf{h}}_{11} \ast \mathbf{x}_2^2
$$

(14)

And we can obtain stream y_2 by:

$$
y_2 = \Gamma_{\mathbf{h}_1} \cdot \hat{\mathbf{h}}_{21} \ast \mathbf{x}_1^1 - \hat{\mathbf{h}}_{22} \ast \mathbf{x}_1^2 + \Gamma_{\mathbf{h}_2} \cdot \hat{\mathbf{h}}_{22} \ast \mathbf{x}_2^1 - \hat{\mathbf{h}}_{21} \ast \mathbf{x}_2^2
$$

(15)

Where $x_1^j \equiv r_1^j$ and $x_2^j \equiv \Gamma_{\mathbf{h}_i,j} r_2^j$.

Using the same equalization procedure presented for the one single receive antenna case, we can also obtain the estimates \hat{b}_1 and \hat{b}_2 of the transmitted symbol streams.

III. MIMO EQUALIZATION-COMBINING

Streams y_1 and y_2 obtained by (5), (6) and (14), (15) for the one single receive antenna case and for the two receive antennas case, respectively, can be viewed as a MIMO system. It is also possible to include the equalization procedure in this MIMO framework [7]. In Fig.1, we have the representation of MIMO-JEC for the one receive antenna case, where x_1^j and x_2^j are the inputs and \hat{b}_1 and \hat{b}_2 are the outputs.

Considering the mathematical manipulations presented in [7], and taking into account system differences, we can obtain \hat{b}_1 and \hat{b}_2 for the one receive antenna case ($j=1$), including diversity and equalization, by:

$$
\hat{\mathbf{b}}_1 = \mathbf{w}_{1,1} \ast \mathbf{x}_1^1 + \mathbf{w}_{1,2} \ast \mathbf{x}_2^1
$$

(16)

And,

$$
\hat{\mathbf{b}}_2 = \mathbf{w}_{2,1} \ast \mathbf{x}_1^1 + \mathbf{w}_{2,2} \ast \mathbf{x}_2^1
$$

(17)

In Fig.2, we present the MIMO-JEC for the two receive antennas case, where x_1^1 and x_2^1 are the inputs corresponding to receive antenna 1 and x_1^2 and x_2^2 are the inputs corresponding to receive antenna 2.

For the two receive antennas case ($j=2$), we extend the results presented in [7] to obtain the estimates \hat{b}_1 and \hat{b}_2 by the following procedure:

$$
\hat{\mathbf{b}}_1 = \mathbf{w}_{1,1} \ast \mathbf{x}_1^1 + \mathbf{w}_{1,2} \ast \mathbf{x}_1^2 + \mathbf{w}_{1,3} \ast \mathbf{x}_2^1 + \mathbf{w}_{1,4} \ast \mathbf{x}_2^2
$$

(18)

And,

$$
\hat{\mathbf{b}}_2 = \mathbf{w}_{2,1} \ast \mathbf{x}_1^1 + \mathbf{w}_{2,2} \ast \mathbf{x}_1^2 + \mathbf{w}_{2,3} \ast \mathbf{x}_2^1 + \mathbf{w}_{2,4} \ast \mathbf{x}_2^2
$$

(19)

MIMO-JEC coefficients can be obtained by the joint space-time RLS adaptation procedure presented in [9]. From Fig.1 and Fig.2, we notice that MIMO-JEC presents a more complex structure than EPPCE and it requires training symbols in the two transmit frame blocks (in both transmit streams from antenna 1 and antenna 2) for correctly obtaining \hat{b}_1 and \hat{b}_2.

![Figure 1. MIMO Equalization Combining (one receive antenna)](image)

![Figure 2. MIMO Equalization Combining (two receive antennas)](image)
IV. SIMULATION RESULTS

In this section, we compare the performance of EPCCE and MIMO-JEC receivers for a wireless communication system employing QPSK data modulation in a frequency selective multipath fading channel. The transmitter employs two transmit antennas whose signals present independent fading and the receiver may use one or two receive antennas (\(j = 1, 2 \)).

Simulations are performed varying the number of training symbols and signal to noise ratio (SNR). Transmitted frames are composed by 500 symbols (\(N_r = 500 \)) divided in two blocks of 250 symbols (\(N_f = 250 \)). Exception is Fig.7, where the transmitted frames are composed by 1000 symbols (\(N_r = 1000 \)), divided in two blocks of 500 symbols (\(N_f = 500 \)) to allow investigation of the asymptotic behavior of the analyzed schemes. Simulation results are obtained computing 4000 frames (\(N_f = 4000 \)). Training is available in both frame blocks (due to STBC structure) and guard symbols are transmitted to avoid interblock interference.

For the simulations, EPC receiver is used as a benchmark of performance. EPC assumes perfect channel estimation and equalization is performed by using the RLS algorithm, EPCCE employs RLS for both channel estimation and equalization, and MIMO-JEC employs MIMO-RLS for the joint equalization-combining procedure [9]. In all three schemes, it is considered that \(\lambda = 1 \).

We assume that the propagation channel coefficients are independent Rayleigh distributed with order 2 (\(L = 3 \)) and block time-invariant. For simulations purpose, we consider that the length of the channel estimation filter is of the same length of the channel and that the length of each equalizer filter (or subfilter) is 2 times the channel length plus 1.

In Fig.3 and Fig.4, we compare the performance of EPCCE, EPC and MIMO-JEC varying the number of training symbols per transmit antenna for SNR=10dB, using one and two receive antennas, respectively. The results for the one receive antenna case, show that MIMO-JEC outperforms EPCCE when the number of training symbols is higher than 30. For the two receive antennas case, EPCCE outperforms MIMO-JEC for training symbols up to 50 symbols per transmit antenna. We can also see that perfect channel estimation is an issue for improving system performance.

In Fig.5 and Fig.6, we compare the performance of EPCCE, EPC and MIMO-JEC varying SNR using one and two receive antennas, respectively. For the one receive antenna case, we use \(N_r = 25 \) and for the two receive antennas case, we consider \(N_r = 50 \). The results show that MIMO-JEC outperforms EPCCE as SNR increases (higher than 10dB for the one receive antenna case and higher than 13 db for the two receive antennas case).

Finally, in Fig.7 is presented an estimate of the asymptotic behavior of the analyzed receivers as a function of the number of training symbols for SNR=10dB. For the one receive antenna case, all receivers present similar asymptotic performance and for the two receive antennas case, MIMO-JEC presents a slight better asymptotic performance.

![Fig.3. Comparison between EPC, EPCCE and MIMO-JEC varying the number of training symbols for SNR=10dB (one receive antenna)](image1)

![Fig.4. Comparison between EPC, EPCCE and MIMO-JEC varying the number of training symbols for SNR=10dB (two receive antennas)](image2)
In this paper, we presented two modified receivers employing space-time block coding for wireless communication systems in frequency selective multipath fading channels. The first one, denoted by EPCCE receiver, is based on a MMSE implementation of the TR-STBC. The second one, denoted MIMO-JEC receiver, is based on the chip level MIMO equalizer presented in [7].

Performance comparison between EPCCE and MIMO-JEC varying the number of training symbols and SNR were performed by simulation. EPC, which performs perfect channel estimation, was used as a reference for the results.

Simulation results showed that MIMO-JEC outperforms EPCCE as SNR increases. For low and moderate SNR, MIMO-JEC can outperform EPCCE if enough training symbols are available; otherwise EPCCE will present performance improvement against MIMO-JEC.

REFERENCES

