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Non-causal adaptive IIR filtering

Phillip M. S. Burt

Abstract— A procedure to approximate non-causal adaptive For a causal system and assuminig) = y(n) = 0 for n < 0,
IIR filtering is described. Such structures could be useful,for gsyccessive outputs are calculated then as
instance, in the equalization of non-minimum phase commuia-

tion channels. The procedure is based on backward calculaths y(0) = bou(0)/ao,

within blocks of samples and we show that for adaptive filtemg y(1) = [bou(1) 4 b1u(0) — ayy(0)]/ao,

the overlap-save method is more suitable than the overlapeal (2) = [bou(2) + byu(1) + beu(0) — ary(1)—
method. Moreover, a temporary freeze of the adapted parametrs Y 0 ! 2 1y

at the beginning of the backward calculations for each blockis —a2y(0)]/ao.

also required. Finally, applying a previously presented mthod

of convergence speed analysis, we show that in the inverse
identification of a causal maximum-phase system with an anti bou(n) + biu(n + 1) + bou(n + 2) =
causal adaptive filter, one of the conditions for faster corsrgence - 1 9
is always satisfied, regardless of the particular responsef dhe = azy(n) + a1y(n + 1) + agy(n +2)
system. A comparison with FIR adaptive filters is presented
showing that the proposed algorithm can achieve a better trde-
off bewtween convergence speed and computational complexi

In the anti-causal case, rewriting the difference equati®n

' and assuming(n) = y(n) = 0 for n > 0, successive outputs
are backward calculated as

Keywords— Non-causal filters, adaptive IIR filtering, conver- y(0) = bau(0)/az,
gence speed. y(=1) = [bou(—1) + byu(0) — a1y(0)]/az,
y(~2) = [bru(~2) + bru(—1) + bou(0) — ary(~1)
[. INTRODUCTION —aoy(0)]/as.

-l(;hteh app;oxmatlonthof nlon—.causatl_ flxte<(jj ltI)R Ilrllters (see [t]\]N? can see that in the anti-causal case the roles of coefficien
an e references therein) is motivated by the prospec b% anday, are analogous to the roles of coefficiehts_, and

approximating zero-phase or other particular phase resmon _, in the causal case, wher¥ is the order of system
such as that of a Hilbert transformer. For this, samples 5 in this example) ,

segmented in blocks within which calculations proceed i
forward and backward manner. In this way, one can take
advantage of the relatively small number of coefficients iB. Block implementation

typical IR structures, even though the memory requiresient o an infinite length input signal, the delayed output of
are not likewise small. In the case of adaptive IIR filteritits 5 staple anti-causal systemn,(n) can be approximated by
approximation of non-causal structures could be of intere%egmenting the input in blocks of length > R, where
for instance, for the equalization of non-minimum phasecornb(n) ~ 0 for n < —R [1]. If the input blocks don't
munication channels. The reduced computational comglexigyeriap, then the backward calculated outputs (with zero
even considering the memory requirement, could be spgcigfitial conditions) of adjacent blocks effectively oveldor
attractive in high-speed applications. R samples, during which the corresponding output samples
II. FIXED NON-CAUSAL IIR FILTERS from each blogk must be added. _This ‘foverlgp-add” method
is represented in Figure 1. Alternatively, if the input ikeare

Th? impulse r_equnsb(.n) of a discrete-time n.on-causalmade to overlap foRR samples, then the corresponding output
LTI (linear and time invariant) system can be written as théaamples of one block are replaced by the output samples of
convolutionh(n) = hy(n)*hy(n) of a causal responser (n),

. the next block. This “overlap-save” method is represented i
where fiy(n) = 0 for n < 0, and an any—cau_sal respons%igure 2. In either case, th® sample overlap represents a
hy(n), wherehy(n) = 0 for n > 0. Alternatively, it could be computational overhead. As discussed in the next sectien, t
rbt\'/'erlap-save method is more suitable for adaptive filtering
¥ From the conditionZ > R it follows that the choice of?
involves a trade-off between precision on one side and mgmor
requirement and delay on the other side. Moreover, since the
average (per sample) computational complexity overhead is
small whenL > R, the choice ofL. also involves a trade-off
between memory requirement and computational complexity.
bou(n) + byu(n — 1) + bau(n — 2) = As an example, let us consider the anti-causal all-passmsyst
= apy(n) + a1y(n — 1) + agy(n — 2). Hy(2) with poles at0.7/ + 60 and0.7/ + 100 (all angles are
. . L in degrees and we adoptfor the unit delay, so the poles are
Dept. of Telecommunications and Control Engineering, EsBolitécnica, insidethe unit circle). The truncation err(E_R hQ(n) is
b
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supported by FAPESP (Proc. 06/01113-0). shown in Figure 3 and serves as a guide for chooging

causal (equal to 0 forn < 0) response, but we do not emplo
this form here.

A. Backward solution of difference equations

For a rational discrete-time system, the input:) and
outputy(n) satisfy a difference equation, as, for instance,
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Fig. 2. Overlap-save method: blocks of input;§ and output ;) samples. B. Temporary adaptatlon freeze
Discarded samples are indicated by™ An additional aspect is raised by considering in more detail

the adaptation of the parameters, for which we assume that

Qﬁ recursive gradient algorithm (for a detailed desariptee,

The square error between an overlap-save approximat¢ . 5 271D i loved. In thi d fixi
U»(n) of the output and its true value (delayed bysamples), or instance, [2, P- ],) s employed. In this case and fixing
apr = 1, the following signals are necessary:

for an input of2500 + R samples of white gaussian noise,
is shown in Figure 4, for. — R = 500, R = 20 and also M
R = 50. The output blocks are backward calculated starting up(n) =u(n) = > an—k(n) up(n+k)
from n = 500 + R, 1000 + R, 1500 + R, etc. and ending k=1

atn = 0, 500, 1000, etc. respectively. As expected from the M

truncation error in Figure 3, the square error reaches a peak  ¥pr(n) = —p(n) — ZaM,k(n) “Uog(n+ k).

at these ending points and the value of this peak decreases as k=1

the overlap between blocks (given W) increases. The signalu;(n) already exists within the filtering structure,

whereasy,;(n) has to be generated by post-filtering the
outputy,(n). After the initialization transient of these filtering
We consider now that the backward calculationigfrn) operations, the mean values of the produgt&:+k)e(n) and
uses direct-form time-varying parameténs(n) and ax(n), g, (n+k)e(n) would ideally (for slow adaptation) correspond
k =0,1,...,M, which are adapted to minimize the meant scaled versions of the derivatives of the mean square erro
square erroiZ{e*(n)}, e(n) = y(n) — Gs(n), given the input \ith respect to parametersy;_, and an_y, respectively.
and desired signalg(n) andy(n), respectively. The problem is that, unlike a conventional forward adaptive
algorithm, these filtering operations must be reset to a zero
A. Overlap-addvs. overlap-save initial state — and therefore undergo a new initialization
As the calculation of the outpui(n), the adaptation must transient— after each block of samples, leading the mean
also be carried out in a backward manner within each blogklue of the aforementioned products away from the desired
of samples. In figures 1 and 2 this implies that, in the overlajerivatives. In order to reduce this disturbance, one mhoee
region, the parameters used to calculate the samples df bl to freeze the adaptation of the parameters during the first
y2 are probably closer to their optimum values than those us8d~ R backward calculations in each block.
to calculated the samples of blogk. Adding these samples, As a numerical example, we consider that such an anti-
as in the overlap-add method, would disturb the adaptatiargusal (or more precisely, backward) adaptive filter is used
whereas replacing the samples of blagkby those of block identify the same anti-causal all-pass system used in @ecti
y2 has no such effect. Therefore, the overlap-save methodisThe results for a white gaussian inpuit:), adaptation steps
more suitable for adaptive filtering. ta = iy = 0.04, L = 500, R = 70 are shown in Figure 5, for

IIl. ADAPTIVE ALGORITHM
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S =100 and S = 0. The negative effect of adopting = 0 o G(2) > H(2) -
is evident. The backward decrease of the squared erromwithi w(n)
each block should also be noted. y(n)
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Fig. 5. Identification of an anti-causal system.
Fig. 6. Identification (top) and inverse identification (fooh) adaptive filter
IV. CONVERGENCE SPEED ANALYSIS configurations.

A. Previous results

In [3]-[5] we have ana|ysed the convergence Speed @!ﬂannEB. ASSUming sufficient mOde”ing, the Optlmal sohut
causal adaptive IIR filters in the identification and invers& (z) = 1/H (z) is non-causal and, in particular, it is anti-
identification configurations. Adaptive filtering in the itii- causal if H;(z) is maximum-phase. Assuming additionally
cation configuration and with a rational spectrum input algnthat the input toff; () is white, writing H;(z) = C(z)/D(z)
is represented in Figure 6, whete(n) is a unit variance and imposing/(z) = H,(z), whereH,(z) is anti-causal, the
white signal andG(z) is a rational minimum-phase transfefmean square error can be written in termsZgfnorms as

function. The particular case in which, for some stable and C(2) ~ 2

causal minimum-phasél;(z), we have H(z) = 1/H;(z) Ele®(n)] = |1- D Hy(z)

and G(z) = H;(z) is equivalent to the inverse identification o (2) )

configuration with white input, also represented in Figure 6 _ ||P) C(z) [D(Z) _F (z)]

Moreover, inverse identification with a non-white input das ~ ||D(2) D(z) | C(z) b

obtained withG(z) = G'(z)H (z). Thus, both configurations C() [D(z) = 2

can be analyzed in an unified manner. = |5 Ce) b(Z)] ;

As shown in [5], a certain decomposition of the mean square (2)

error brings up the “projected function” where D(z) = z¥D(z71), N is the order of H;(z) and

the last equality follows from the fact thab(z)/D(z) is

a 1
Hy(2) =[G (=71 H ()], all-pass. This corresponds to the identification of an anti-

where[ ] is the causal projection operator. We note that ifusal systemt,(z) = D(z)/C(z) with a non-white input
the identification configuration with white inpu€(z) = 1) Signal generated with the anti-causal maximum-phasefeans
we obtain H,(z) = H(z) and in the inverse identification function G;(z) = C(z)/D(z), and is completely equivalent
configuration with white inputH,(z) = [Hi(z~')/Hi(z)]e. © 'Fhe causal i.dentification. case in Figure 6. Therefore, the
A smaller spread of the Hankel singular values /gj,(z) anti-causal projected functioffy, (z) = [Gy (=~") Hy (2)]
(eigenvalue spread which achieves its minimum wigyiz) 'S of interest, and is given by

is all-pass) tends to make convergence faster. Regardang th C(z) D(z) C(2)
choice of parameterization, the proximity of the poles of bp (2) = {D(z’) C(z)} = Ck)
H,(z) one to the other has a more negative impact on - ©
convergence speed for a direct form parameterization than WhereC(z) = 2 C(z~1). Quite surprisingly then, regardless
a lattice parameterization. of the particular maximum-phadé; (z), Hy,(z) is always all-
pass, contributing to faster convergence.
o . o As a numerical example, we consider a ubjtnorm H;(z

B. Application to non-causal adaptive filtering _ ~ with poles a).7 1 /+130 and0.7-1 /4100 and with zerés)at

_ Let_us see now how these results can be_ ap_phed to pgmcqﬁa%li% and0.95/+135. The frequency respongé; (/)
s_ltua_ltlons |nvoIV|r_1g non-causal a(_JIaptlve flltermg._Thend_- is shown in Figure 7 and the truncation er@;i%_oo h2(n)
fication of an anticausali, (=) (as in the example in Sectionjs shown in Figure 8. The result of the adaptation for a white
3) is completely equivalent to the case of a cauBdlz) gaussian signal(n) with unit variance, adaptation steps =

and, therefore, has equivalent convergence speed p@Rerfl 51 and = 0.1, L = 1200, and R = S = 400 is shown
However, this case seems to be of small practical interest. Figure 9. In this case the poles @, (z) (which are the

On the other hand, the inverse identification of a causghos off7,(2)) are uniformly distributed, which together with

non-minimum phase systenfi;(z) is of greater practical g fact thatf,,(z) is all-pass contributes to a relatively fast
interest, as it relates to the equalization of Commun'm“%onvergence.




XXVII SIMP OSIO BRASILEIRO DE TELECOMUNICA®ES - SBrT 2009, DE 29 DE SETEMBRO A 2 DE OUTUBRO DE 2009, BLUMAN SC

10 — would represent the best trade-off between convergenasispe
and computational complexity.
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n xle3 A procedure to approximate non-causal adaptive IIR fil-
Fig. 9. Inverse identification of causal maximum-phdgg(z). tering was described and some important implementation
aspects were discussed. Regarding convergence speed, we
V. COMPARISON WITHFIR ADAPTIVE FILTERING showed that in the inverse identification of a causal maximum

_phase system with an anti-causal adaptive filter, a preljious
_In the example abovéi;(z) has zeros close to the unityptained condition for faster convergence is, quite saigly,
circle, leading to deep spectral notches and to a long (alfjways satisfied, regardless of the particular responséef t
causal) impulse response fdr/H;(z). Therefore, in the gystem. The presented IIR algorithm can achieve a bettie-tra
inverse identification offf;(z) an FIR adaptive filter would ff petween convergence speed and computational complexit
require a large number of coefficients. Using the modifiegflan FIR adaptive filters, in certain situations. An impotta
error-feedback lattice least-square (EF-LSL) algorithini6  continuation of this work would be to take into acount more
with, for instance,M = 200 coefficients, leads to a steady-yeneral non-causal adaptive filters, comprising causahatid
state mean square error of approximatelg dB, as showed 5,53l stages.
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