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Non-causal adaptive IIR filtering
Phillip M. S. Burt

Abstract— A procedure to approximate non-causal adaptive
IIR filtering is described. Such structures could be useful,for
instance, in the equalization of non-minimum phase communica-
tion channels. The procedure is based on backward calculations
within blocks of samples and we show that for adaptive filtering
the overlap-save method is more suitable than the overlap-add
method. Moreover, a temporary freeze of the adapted parameters
at the beginning of the backward calculations for each blockis
also required. Finally, applying a previously presented method
of convergence speed analysis, we show that in the inverse
identification of a causal maximum-phase system with an anti-
causal adaptive filter, one of the conditions for faster convergence
is always satisfied, regardless of the particular response of the
system. A comparison with FIR adaptive filters is presented,
showing that the proposed algorithm can achieve a better trade-
off bewtween convergence speed and computational complexity.

Keywords— Non-causal filters, adaptive IIR filtering, conver-
gence speed.

I. I NTRODUCTION

The approximation of non-causal fixed IIR filters (see [1]
and the references therein) is motivated by the prospect of
approximating zero-phase or other particular phase responses,
such as that of a Hilbert transformer. For this, samples are
segmented in blocks within which calculations proceed in
forward and backward manner. In this way, one can take
advantage of the relatively small number of coefficients in
typical IIR structures, even though the memory requirements
are not likewise small. In the case of adaptive IIR filtering,the
approximation of non-causal structures could be of interest,
for instance, for the equalization of non-minimum phase com-
munication channels. The reduced computational complexity,
even considering the memory requirement, could be specially
attractive in high-speed applications.

II. F IXED NON-CAUSAL IIR FILTERS

The impulse responseh(n) of a discrete-time non-causal
LTI (linear and time invariant) system can be written as the
convolutionh(n) = hf (n)∗hb(n) of a causal responsehf (n),
where hf (n) = 0 for n < 0, and an anti-causal response
hb(n), wherehb(n) = 0 for n > 0. Alternatively, it could be
written as the sum of a causal response and a strictly anti-
causal (equal to 0 forn ≤ 0) response, but we do not employ
this form here.

A. Backward solution of difference equations

For a rational discrete-time system, the inputu(n) and
outputy(n) satisfy a difference equation, as, for instance,

b0u(n) + b1u(n − 1) + b2u(n − 2) =
= a0y(n) + a1y(n − 1) + a2y(n − 2).
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For a causal system and assumingu(n) = y(n) = 0 for n < 0,
successive outputs are calculated then as

y(0) = b0u(0)/a0,
y(1) = [b0u(1) + b1u(0) − a1y(0)]/a0,
y(2) = [b0u(2) + b1u(1) + b2u(0) − a1y(1)−

−a2y(0)]/a0.

In the anti-causal case, rewriting the difference equationas

b2u(n) + b1u(n + 1) + b0u(n + 2) =
= a2y(n) + a1y(n + 1) + a0y(n + 2)

and assumingu(n) = y(n) = 0 for n > 0, successive outputs
are backward calculated as

y(0) = b2u(0)/a2,
y(−1) = [b2u(−1) + b1u(0) − a1y(0)]/a2,
y(−2) = [b2u(−2) + b1u(−1) + b0u(0) − a1y(−1)

−a0y(0)]/a2.

We can see that in the anti-causal case the roles of coefficients
bk andak are analogous to the roles of coefficientsbN−k and
aN−k in the causal case, whereN is the order of system
(N = 2 in this example).

B. Block implementation

For an infinite length input signal, the delayed output of
a stable anti-causal systemhb(n) can be approximated by
segmenting the input in blocks of lengthL > R, where
hb(n) ≈ 0 for n < −R [1]. If the input blocks don’t
overlap, then the backward calculated outputs (with zero
initial conditions) of adjacent blocks effectively overlap for
R samples, during which the corresponding output samples
from each block must be added. This “overlap-add” method
is represented in Figure 1. Alternatively, if the input blocks are
made to overlap forR samples, then the corresponding output
samples of one block are replaced by the output samples of
the next block. This “overlap-save” method is represented in
Figure 2. In either case, theR sample overlap represents a
computational overhead. As discussed in the next section, the
overlap-save method is more suitable for adaptive filtering.

From the conditionL > R it follows that the choice ofR
involves a trade-off between precision on one side and memory
requirement and delay on the other side. Moreover, since the
average (per sample) computational complexity overhead is
small whenL ≫ R, the choice ofL also involves a trade-off
between memory requirement and computational complexity.
As an example, let us consider the anti-causal all-pass system
Hb(z) with poles at0.7∠± 60 and0.7∠± 100 (all angles are
in degrees and we adoptz for the unit delay, so the poles are
inside the unit circle). The truncation error

∑−R

n=−∞
h2

b(n) is
shown in Figure 3 and serves as a guide for choosingR.
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Fig. 1. Overlap-add method: blocks of input (uj ) and output (yj ) samples.
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Fig. 2. Overlap-save method: blocks of input (uj ) and output (yj) samples.
Discarded samples are indicated by “×”.

The square error between an overlap-save approximation
ŷb(n) of the output and its true value (delayed byL samples),
for an input of 2500 + R samples of white gaussian noise,
is shown in Figure 4, forL − R = 500, R = 20 and also
R = 50. The output blocks are backward calculated starting
from n = 500 + R, 1000 + R, 1500 + R, etc. and ending
at n = 0, 500, 1000, etc. respectively. As expected from the
truncation error in Figure 3, the square error reaches a peak
at these ending points and the value of this peak decreases as
the overlap between blocks (given byR) increases.

III. A DAPTIVE ALGORITHM

We consider now that the backward calculation ofŷb(n)
uses direct-form time-varying parametersbk(n) and ak(n),
k = 0, 1, . . . , M , which are adapted to minimize the mean-
square errorE{e2(n)}, e(n) = y(n) − ŷb(n), given the input
and desired signalsu(n) andy(n), respectively.

A. Overlap-addvs. overlap-save

As the calculation of the output̂yb(n), the adaptation must
also be carried out in a backward manner within each block
of samples. In figures 1 and 2 this implies that, in the overlap
region, the parameters used to calculate the samples of block
y2 are probably closer to their optimum values than those used
to calculated the samples of blocky1. Adding these samples,
as in the overlap-add method, would disturb the adaptation,
whereas replacing the samples of blocky1 by those of block
y2 has no such effect. Therefore, the overlap-save method is
more suitable for adaptive filtering.
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Fig. 3. Truncation error
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Fig. 4. Square error in overlap-save approximation of the output of anti-
causal systemHb(z), L − R = 500.

B. Temporary adaptation freeze

An additional aspect is raised by considering in more detail
the adaptation of the parameters, for which we assume that
the recursive gradient algorithm (for a detailed description see,
for instance, [2, p. 271]) is employed. In this case and fixing
aM = 1, the following signals are necessary:

uf(n) = u(n) −

M∑

k=1

aM−k(n) · uf(n + k)

ŷbf (n) = −ŷb(n) −

M∑

k=1

aM−k(n) · ŷbf (n + k).

The signaluf (n) already exists within the filtering structure,
whereas ŷbf (n) has to be generated by post-filtering the
outputŷb(n). After the initialization transient of these filtering
operations, the mean values of the productsuf(n+k)e(n) and
ŷbf (n+k)e(n) would ideally (for slow adaptation) correspond
to scaled versions of the derivatives of the mean square error
with respect to parametersbM−k and aM−k, respectively.
The problem is that, unlike a conventional forward adaptive
algorithm, these filtering operations must be reset to a zero
initial state − and therefore undergo a new initialization
transient− after each block of samples, leading the mean
value of the aforementioned products away from the desired
derivatives. In order to reduce this disturbance, one procedure
is to freeze the adaptation of the parameters during the first
S ≈ R backward calculations in each block.

As a numerical example, we consider that such an anti-
causal (or more precisely, backward) adaptive filter is usedto
identify the same anti-causal all-pass system used in Section
2. The results for a white gaussian inputu(n), adaptation steps
µa = µb = 0.04, L = 500, R = 70 are shown in Figure 5, for
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S = 100 and S = 0. The negative effect of adoptingS = 0
is evident. The backward decrease of the squared error within
each block should also be noted.
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Fig. 5. Identification of an anti-causal system.

IV. CONVERGENCE SPEED ANALYSIS

A. Previous results

In [3]-[5] we have analysed the convergence speed of
causal adaptive IIR filters in the identification and inverse
identification configurations. Adaptive filtering in the identifi-
cation configuration and with a rational spectrum input signal
is represented in Figure 6, wherew(n) is a unit variance
white signal andG(z) is a rational minimum-phase transfer
function. The particular case in which, for some stable and
causal minimum-phaseHI(z), we haveH(z) = 1/HI(z)
and G(z) = HI(z) is equivalent to the inverse identification
configuration with white input, also represented in Figure 6.
Moreover, inverse identification with a non-white input canbe
obtained withG(z) = G′(z)HI(z). Thus, both configurations
can be analyzed in an unified manner.

As shown in [5], a certain decomposition of the mean square
error brings up the “projected function”

Hp (z) ,
[
G

(
z−1

)
H (z)

]
⊕

,

where [.]⊕ is the causal projection operator. We note that in
the identification configuration with white input (G(z) ≡ 1)
we obtainHp(z) = H(z) and in the inverse identification
configuration with white input,Hp(z) = [HI(z

−1)/HI(z)]⊕.
A smaller spread of the Hankel singular values ofHp(z)
(eigenvalue spread which achieves its minimum whenHp(z)
is all-pass) tends to make convergence faster. Regarding the
choice of parameterization, the proximity of the poles of
Hp(z) one to the other has a more negative impact on
convergence speed for a direct form parameterization than for
a lattice parameterization.

B. Application to non-causal adaptive filtering

Let us see now how these results can be applied to particular
situations involving non-causal adaptive filtering. The identi-
fication of an anticausalHb(z) (as in the example in Section
3) is completely equivalent to the case of a causalH(z)
and, therefore, has equivalent convergence speed properties.
However, this case seems to be of small practical interest.

On the other hand, the inverse identification of a causal
non-minimum phase systemHI(z) is of greater practical
interest, as it relates to the equalization of communication
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HI(z) Ĥ(z) h+
−

r





�

y(n) û(n)
e(n)

u(n)

Fig. 6. Identification (top) and inverse identification (bottom) adaptive filter
configurations.

channels. Assuming sufficient modelling, the optimal solution
Ĥ(z) = 1/HI(z) is non-causal and, in particular, it is anti-
causal if HI(z) is maximum-phase. Assuming additionally
that the input toHI(z) is white, writingHI(z) = C(z)/D(z)
and imposingĤ(z) = Ĥb(z), whereĤb(z) is anti-causal, the
mean square error can be written in terms ofL2 norms as

E[e2(n)] =

∥∥∥∥1 −
C(z)

D(z)
Ĥb(z)

∥∥∥∥
2

=

∥∥∥∥
D(z)

D(z)

C(z)

D(z)

[
D(z)

C(z)
− Ĥb(z)

]∥∥∥∥
2

=

∥∥∥∥
C(z)

D(z)

[
D(z)

C(z)
− Ĥb(z)

]∥∥∥∥
2

,

where D(z) = zND(z−1), N is the order ofHI(z) and
the last equality follows from the fact thatD(z)/D(z) is
all-pass. This corresponds to the identification of an anti-
causal systemHb(z) = D(z)/C(z) with a non-white input
signal generated with the anti-causal maximum-phase transfer
function Gb(z) = C(z)/D(z), and is completely equivalent
to the causal identification case in Figure 6. Therefore, the
anti-causal projected functionHbp (z) ,

[
Gb

(
z−1

)
Hb (z)

]
⊖

is of interest, and is given by

Hbp (z) =

[
C(z)

D(z)

D(z)

C(z)

]

⊖

=
C(z)

C(z)
,

whereC(z) = zNC(z−1). Quite surprisingly then, regardless
of the particular maximum-phaseHI(z), Hbp(z) is always all-
pass, contributing to faster convergence.

As a numerical example, we consider a unitL2 normHI(z)
with poles at0.7−1∠±130 and0.7−1∠±100 and with zeros at
0.95∠±45 and0.95∠±135. The frequency responseHI(e

jω)
is shown in Figure 7 and the truncation error

∑−R

n=−∞
h2

b(n)
is shown in Figure 8. The result of the adaptation for a white
gaussian signalu(n) with unit variance, adaptation stepsµa =
0.01 and µb = 0.1, L = 1200, andR = S = 400 is shown
in Figure 9. In this case the poles ofHbp(z) (which are the
zeros ofHI(z)) are uniformly distributed, which together with
the fact thatHbp(z) is all-pass contributes to a relatively fast
convergence.
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Fig. 7. Frequency responseHI(ejω).
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Fig. 9. Inverse identification of causal maximum-phaseHI(z).

V. COMPARISON WITH FIR ADAPTIVE FILTERING

In the example aboveHI(z) has zeros close to the unit
circle, leading to deep spectral notches and to a long (anti-
causal) impulse response for1/HI(z). Therefore, in the
inverse identification ofHI(z) an FIR adaptive filter would
require a large number of coefficients. Using the modified
error-feedback lattice least-square (EF-LSL) algorithm of [6]
with, for instance,M = 200 coefficients, leads to a steady-
state mean square error of approximately−75 dB, as showed
in Figure 10 (a forgetting factorλ = 0.9 was used and the
prediction error energies were initialized with1). A similar
steady-state performance can be obtained using an IIR adaptive
filter as described above, now withL = 600, R = S =
200, µa = 0.01 and µb = 0.09, as can also be seen in
Figure 10. The EF-LSL algorithm converges in approximately
2M = 400 samples and is faster than the IIR algorithm
(which requires 3500 samples). However, its computational
complexity is much larger, as presented in Table I. Considering
now the LMS adaptive algorithm, it has smaller computational
complexity than the EF-LSL algorithm (though still much
larger than the IIR algorithm) but converges much slower, due
to the large number of coefficients and the correlation of the
input samples (an adaptation step ofµ = 0.005 was used,
which is close to the maximum value allowed in this case). In
cases such as this, therefore, it is likely that the IIR algorithm

would represent the best trade-off between convergence speed
and computational complexity.
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Fig. 10. Inverse identification of maximum-phaseHI(z): typical realizations
of the IIR, EF-LSL and LMS algorithms (smoothed for better visualization).

TABLE I

NUMBER OF COMPUTATIONS PER SIGNAL SAMPLE

IIR EF-LSL LMS
N , M 4 200 200

+
(5N + 2)(1 + R

L
)

= 29.3

9M

= 1800

2M

= 400

×

(5N + 4)(1 + R
L

)

= 32

13M

= 2600

2M + 1

= 401

÷ 0
2M

= 400
0

VI. CONCLUSION

A procedure to approximate non-causal adaptive IIR fil-
tering was described and some important implementation
aspects were discussed. Regarding convergence speed, we
showed that in the inverse identification of a causal maximum-
phase system with an anti-causal adaptive filter, a previously
obtained condition for faster convergence is, quite surprisingly,
always satisfied, regardless of the particular response of the
system. The presented IIR algorithm can achieve a better trade-
off between convergence speed and computational complexity
than FIR adaptive filters, in certain situations. An important
continuation of this work would be to take into acount more
general non-causal adaptive filters, comprising causal andanti-
causal stages.

REFERENCES

[1] C. M. Rader and L. B. Jackson, “Approximating noncausal IIR digital
filters having arbitrary poles, including new Hilbert transformer designs,
via forward/backward block recursion,”IEEE Transactions on Circuits
and Systems I, vol. 53, no. 12, pp. 2779–2787, Dec. 2006.

[2] P. A. Regalia, Adaptive IIR filtering in signal processing and control,
Marcel Dekker, New York, 1995.

[3] P. M. S. Burt and P. A. Regalia, “A new framework for convergence
analysis and algorithm development of adaptive IIR filters,” IEEE
Transactions on Signal Processing, vol. 53, no. 8, pp. 3129–3140, Aug.
2005.

[4] P. M. S. Burt, “Inverse identification adaptive IIR filtering: convergence
speed analysis and successive approximations algorithm,”in Proc. IEEE
Icassp, Honolulu, 2007, vol. 3, pp. 1309–1312.

[5] T. E. Filgueiras Filho and P. M. S. Burt, “On the convergence speed
of adaptive IIR filters with rational spectrum input signals,” in Proc.
European Signal Processing Conference (Eusipco), Lausanne, 2008.

[6] M. Miranda, M. Gerken, and M.T.M. da Silva, “Efficient implementation
of error-feedback LSL algorithm,”Electronics Letters, pp. 1308–1309,
1999.


