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The Fast Fourier Transform and

Its Applications

JAMES W. COOLEY, PETER A. W. LEWIS, AND PETER D. WELCH

Abstract-The advent of the fast Fourier transform method has
greatly extended our ability to implement Fourier methods on digital
computers. A description of the alogorithm and its programming is
given here and followed by a theorem relating its operands, the finite
sample sequences, to the continuous functions they often are in-
tended to approximate. An analysis of the error due to discrete sam-
pling over finite ranges is given in terms of aliasing. Procedures for
computing Fourier integrals, convolutions and lagged products are
outlined.

HISTORICAL BACKGROUND
T HE FAST Fourier transform algorithm has an

interesting history which has been described in
[3]. Time does not permit repeating this history

here in detail. The essentials are, however, that until
the recent publication of fast Fourier transform
methods, computer programs were using up hundreds
of hours of computer time with procedures requiring
something proportional to N2 operations to compute
Fourier transforms of N data points. It is not surprising
then that the "new" methods requiring a number of
operations proportional to N log N received consider-
able attention and led to revisions in computer programs
and in problemn-solving techniques using Fourier
methods. It was discovered later that the base 2 form
of the fast Fourier transform algorithm had been pub-
lished many years ago by Runge and Konig [10] and
by Stumpff [12], [13]. These are authors whose works
are widely read and their papers certainly were used by
those computing Fourier series. How then could these
important algorithms have gone unnoticed? The answer
is that the papers of Runge, K6nig, and Stumpif de-
scribed primarily how one could use symmetries of the
sine-cosine functions to reduce the amount of computa-
tion by factors of 4, 8, or even more. Relatively small
portions of these papers mentioned the successive dou-
bling algorithm which permitted one to take two Fourier
analyses of N-point samples of data and combine them
in N operations to obtain an analysis of a 2N-point
sampling of the same data. Successive application of
this algorithm obviously yields an N-point Fourier
analysis in 10g2 N doublings, and therefore, takes N log2
N operations. Thus, while the computational method
using symmetries reduced the proportionality factor in
the KN2 operations required to transform an N-point
sequence, the method based on the doubling algorithm
took a number of operations proportional to N log2 N.
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It is most likely that with the relatively small values of
N used in preelectronic computer days, the former
methods were easier to use and took fewer operations.
Consequently, the methods requiring N log N operations
were neglected. With the arrival of electronic computers
capable of doing calculations of Fourier transforms with
large values of N, the N log N methods were overlooked
and the well-known hand calculator methods were pro-
grammed for the computers. Perhaps there is something
to be learned from this experience, namely, that there
may exist numerical methods in the older literature
which should be reappraised whenever computing de-
vices undergo radical changes.

FAST FOURIER ALGORITHMS
In the interest of coherent presentation, the defini-

tions and procedures utilized herein will be developed
in blocks and shown as figures. Thus, the discrete
Fourier series is defined in Fig. 1 with A (n) being a
sequence which gives the complex Fourier amplitudes
as a function of frequency n. The X(j), j=0, 1, * * *,
N-1 are regarded here as a complex sequence, and in
a problem may represent a sampling of a signal at N
sampling points. Also,

(2iri' 2r 2r
WN= exp .- = cos-+ isin-

N1 N N

is the principle Nth root of unity and if we substitute
the expression for WN in terms of sines and cosines, we
obtain the perhaps more familiar sine-cosine Fourier
series. Complex Fourier series is employed for ease of
notation and derivation of formulas. One should note
next the inversion formula in Fig. 1, giving the A (n)'s
in terms of the X(j)'s. Since A (n) is also a Fourier series,
an algorithm or a program for computing the A (n)'s
from the X(j)'s can be used to compute the X(j)'s from
the A(n)'s. Since WNN= 1, the exponent of WN is to
be interpreted modulo N. This leads to an essential
property of the sequences X(j) and A (n), i.e., that they
are periodic functions of j and n, respectively, with
period N.

It is shown in Fig. 2 that when N is a product, N= rs,
the Fourier series can be calculated in a two-stage pro-
cess. This is done just as though the sequences A (n) and
X(j) were defined on two-dimensional rXs arrays with
the array indices (ji, jo) and (n1, no) being defined as
shown. When we substitute for j and n in WNin, and jn
is reduced modulo N, it is found that the series can be

27

Authorized licensed use limited to: Peking University. Downloaded on March 24, 2009 at 01:10 from IEEE Xplore.  Restrictions apply.



IEEE TRANSACTIONS ON EDUCATION, MARCH 1969

Discrete Fourier Series:
N-1

X(j) - E A(n)wjn
n,O N

where WN exp(27riIN)
Inversion Formula:

N-1

N j.0 N

Let us write: X(tjt4-A(n)
Periodicity:

WNN * I, Wj'N+N.

w/-w mod
0'j<N

Xtj) Xtj mod N)

Atnt = Atn mod N)

Orthogonality:
N-1 N if n-mmodN
EWnj W-mj,

j 0 0 otherwise.

Fig. 1. Definition of discrete Fourier transform.

Mapping ot Indices:

Assume N = r s

i-- (il' io)
jlr +jo

n-+lnl, no)
n * n1s + no

0,.r-1
jl * O,1, ..., s-l

nO = 0, .s-1
n1 0,1.r-I

wlin 5wjlnlr - WWjNnls X Wiln°r x W
ono

I1 x WjronIX WilO X Wjonor jN

s-1 r-1 j0n1 j0no jln0
X(j1, jo) E E Aln1n0)Wr WN WS

no,On00nf0
O)

jono r-i1
ljono) WO° E 0WOn

njgo

ns1

Fig. 2. Factorization into subseries.

Number of operations (multiply-adds) for N-point
Fourier analysis is:

Number of operations N2

Byfactoring, N r x s

Number of operations r2s + s2r N K (r+s).

Byfactoring N r1, r2 x .., x rm:

Number o operations- N x (r1 + r2 + + rm).

Forminimum, r1 ...- rm r, N rm, i.e.,

m bogrN:

Number of operations N r- IogrN N * o12N r

r r/1o92r
2 2.00
3 1.88
4 2.00
5 2.15
6 2.31
7 2.49
8 2.67
9 2.82
10 3.01

Fig. 3. Minimization of number of operations.

Let:
XjvAn j, n = 0,1, ..,2N-1

X2j+1)A, } ij, n 0,1,. N-1

I 2N-1 jn
An = 2N I Xj W2Nj10

A5=2 {E X2 nW2465 + X2w,+lq2 1)n}

But W2 =W2N N

1 1
N-i ,,In Ni1

An = L X2j NW2+ j+1 W2N

An 2 An2N

An+N 2 An 2N

Fig. 4. Successive doubling method.

calculated by first summing over n1 to form an inter-
mediate array Ai(jo, no), and then summing over no.
This gives Al(jo, no) as a phase factor WNiono times a set
of r-term Fourier series with coefficients A (n1, no). The
final result is then a set of s-term Fourier series with
AiU(ono) as coefficients. It is thus seen how the amount
of computation is reduced from N2 for the original series
to r2s+s2r = N(r+s) for the two-stage process. By iterat-
ing on this procedure, the amount of calculation for a
more composite N is reduced as shown in Fig. 3 to be N
times the sum of the factors of N. If N is arbitrary, it is
seen here by this counting that the lowest number of
calculations is obtained if all factors are equal to 3.
However, by avoiding multiplications when the powers
of WN are simple numbers like + 1 or + i, one can reduce
the calculations even further for r =2, 4, 8, and 16.
The successive doubling algorithm is the special case

when all factors of N are equal to 2, i.e., N=2M. A
separate derivation is given for this algorithm in Fig. 4.
The basic formula which can be copied into a program
with some simple logic for generating the indices ap-
pears on the bottom two lines.
To demonstrate the simplicity of the basic procedure,

a complete operable program in FORTRAN is given in
Fig. 5. The first half of the program including the
"DO 7" loop performs a reordering of the data. The
second half including the "DO 20" loop actually does
the calculation. This program requires log2N evalua-
tions of the sine and cosine and N multiplications by W.
For N=1024, this represents about 15 percent more
operations ("operation" being defined here as a complex
addition or multiplication) than would be required by
the simple expedient of storing tables of powers of WN.
Then, after that, a more complicated logic, as used in
one of the available SHARE programs, would yield an
additional saving of 10 percent in arithmetic operations.
However, bookkeeping takes about as much time as the
arithmetic, so the present simple program is estimated
to be only about 12 percent less efficient than a more
optimally programmed FORTRAN program.

Fig. 6 shows a slightly different fast Fourier transform
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SUBROUTINE FFT(A,M)
COPMLEX A(1024),U,W,T
NI= 2*ww
NV2 = N/2
NFl = N-1
J=1
DO 7 l=1,NM1
IF(I.GE.J) GO TO 5
T = A(J)
A(J) AMI)
A(M) = T

5 K=NV2
6 IF(K.GE.J) GO TO 7

J = J-K
K=K/2
GO TO 6

7 J= J+K
PI = 3.14159265358979
D0 20 L=1,M
LE = 2**L
LE1 = LE/2
U = (1.0,0.)
W=CMPLX(COS(PI/LEl),SIN(PI/LEl)'
DO 20 J-1,LE1
DO 10 I=J,N,LE
IP = I+LE1
T=A( IP)*U
A( I P)=A( )-T

10 A(I)=A(I)+T
20 U=U*W

RETURN
END

FiG. 5. Program for computing DFT by FFT method.

Mappings --> 1j1,jo)
n Inl, no)

defined by

n'rno+sni (modN, 0'n < N)

and

jo j (mod r)

jl a j (mod s)
Then, j s * (s) Jo + r1r)-1 j,

where l; denotqs reciprocal mod r.

Then wh *n°j Wisnj noj nlj nol Wn1jo

r-I nj

Let A1tj0, no) - E A(n1, no) Wr10
nlo

s-1I jn

X(jj, jo) * E Al(jono)l °
no0O

Fig. 6. Prime factor algorithm.
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Fig. 7. Time required for calculation of Fourier transform of
real data on IBM 7094 using FORTRAN with conventional

and fast methods.

algorithm. This one requires that the factors of N be
mutually prime and uses a different mapping of the
one-dimensional indices j and n into the index pairs
(Jl jo) and (ni, no), respectively, from that given in Fig.
2. The result is a procedure quite similar to the one given
above, except that the phase factor is missing in the
calculation of Al(jo, no). This can be used to advantage
in combination with the previous algorithm. For ex-
ample, to introduce an odd factor s, let N = s r where r
is a power of two. Then one can program the prime
factor algorithm using the power of two subroutine for
the r-point subseries.
The time required for computing Fourier series by a

conventional program and by the FFT algorithm is
illustrated in Fig. 7. It is seen here how quickly one can
arrive at values of N which are so large as to make con-
ventional methods unfeasible. The rate of growth with
N of the fast methods shows that as technological ad-
vances permit the measurement and collection of data at
increasing rates, the demands for computer speed rise
only slightly more than linearly. Since advances in
computer technology can be expected to increase at the
same rate as the data collection, this indicates that the
digital Fourier methods can be expected to continue to
be feasible with technological advances. Such a predic-
tion would not be possible if N2 operation methods were
necessary. Perhaps the future will even see radios with
digital tuners.
The errors found in the calculation of a Fourier trans-

form of a single complex exponential function are given
in Table I. It can be shown that if one has data which
are roughly evenly distributed, the FFT algorithm se-
quences the calculations in such a way that the numbers
added on each successive intermediate step are approxi-
mately of the same expected value. This minimizes the
error introduced by the shifting and chopping done in
floating point calculations. A more careful error analysis
of a sequentially ordered sum of products calculation
would disclose an error whose expected value could be
proportional to N, while the FFT method by the same
estimation would give an error proportional to 10g2 N.
To test this, the maximum error is divided by log2 N
in the third column of Table I and is found to follow this
rule. Table II shows the results of a test on random
data where the transform to frequency and back was
effected and checked for accuracy. The same rate of
growth of error with log2 N instead of N is found.
To demonstrate a simple application of the FFT pro-

gram (Fig. 8), data from a strain seismograph of the
Rat Island, Alaska, earthquake were Fourier-analyzed
by Dr. L. Alsop of IBM in 1966. The data were recorded
at 2048 points over a 131-hour period after transients
resulting from the initial shock had died out. A conven-
tional program took 1567.8 seconds to compute the
periodogram or estimated power spectrum (the modulus
squared of the Fourier transform), which is shown in
Fig. 9. The same task took 2.4 seconds with the FFT
program and gave more accurate results. The result of

s
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TABLE I
CALCULATED MAXIMUM AND Rms ERROR IN COMPUTING THE,
FOURIER TRANSFORM OF A SINGLE COMPLEx ExPONENTIAL
FUNCTION EXP (27ri.jk/N),j=0, 1, 2, - -, N-i1, k=2*

Maximu
Error

Errors in units of 10-8

Max

10g2N E
ins
,rror

Time
(minutes)

512 4.47 0.50 0.0133 0.008
1024 5.22 0.52 0.0072 0.017
2048 5.22 0.47 0.0036 0.037
4096 5.96 0.50 0.0019 0.085
8192 6.71 0.52 0.0010 0.175

* The program was compiled by IBSYS, FORTRAN iv and run
on the IBM 7094. The time for calculating one Fourier transform is
given in minutes.

I-
z
id
z
0

3:
0

-j

z

C3
I

1-

z
0

-4

z

z2

291.97

242.17

169.37

136.56

63.78

30.36

-21 .80

-74 50

-127.10

-190.19

-232.99

TABLE II
RESULTS OF TRANSFORMING RANDom DATA DISTRIBUTED EVENLY

BETWEEN 0 AND 1 To FREQUENcy DATA AND BACK*

Errors in Units of 10-8

N Maximum Max
rms rms___

Error lOg2N Error lOgIN
256 13.4 1.68 7.7 0.96
512 14.9 1.66 8.6 0.96
1024 17.8 1.78 9.6 0.96
2048 20.9 1.90 10.8 0.98
4096 24.5 2.04 13.0 1.08
8192 29.8 2.29 14.6 1.12

* The maximum and rms differences between the starting and
resulting arrays are listed. These quantities, divided by log2N, show
the errors to be proportional to log2N.
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Fig. 8. Strain seismograph of Rat Island earthquake. N=2048; T= 131 hours.

32.34

29.-11

16.17 U

12e.93

9.70 95 PER CENT CONrIDENCE LEVEL

6.46

3.23

23.00

PERIOO IN MINUTES

Fig. 9. Power spectrum of strain seismograph of Rat Island earthquake. N=2048; T= 13' hours.
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the calculation is a set of possibly significant sharp peaks
in the periodogram (power spectrum) corresponding to
the natural modes of vibration of the earth. It should
be noted that the 0.95 confidence band given is for indi-
vidual values of A (n) 2.

SAMPLED REPRESENTATION OF DATA

The data to be treated in Fourier analysis are often
infinite in extent and/or continuous in the time or space
domain and/or in the frequency domain. Of necessity
one must represent and perhaps approximate such data
in terms of the finite discrete sequences and their
Fourier transforms, as was just discussed. Of funda-
mental importance, then, is the relationship between the
"true" data and its sampled representation [4]. This
relationship is expressed in the form of a theorem in
Fig. 10. This theorem says that if x(t) and a(f) are an
integral transform pair, one must first construct from
them periodic aliased functions xp(t) and ap(f) with
period T and F, respectively. The theorem further
states that these periodized functions, each evaluated at
N discrete points in its period, form a discrete finite
Fourier transform pair.
As an illustration, a numerical example is worked out

in Fig. 11 for the function x(t) = 0 for t < 0 and x(t) = e-t
for t>0. In this example, T=8 and N=16 giving a
sampling integral of DT= 2. Since T is so large, x(t) is
indistinguishable from the aliased function xp(t), which
is plotted in the upper curve. Sample values supplied
to the discrete Fourier transform program are indicated
by dots. Note that at the discontinuity at t=0, one
must define x,(t) as the average of x(-0) and x(+0),
since this is the value given by the inverse Fourier
transform at a discontinuity. The correct transform
a(f) = (1 +2rif)-l is plotted in the solid line in the two
lower graphs, the real part in one and the imaginary part
in the other. The dots represent the computed values of
ap(f) at N= 16 points in the frequency period F= 1/DT
=N/T=2. Here, the effect of "aliasing" in the fre-
quency domain is evident. The computed values follow
a curve which is the sum of a(f) and a(f) displaced to
the right by F. One can see that the error due to this
aliasing is significant for f near F/2. If one seeks in-
creased accuracy, it is obviously necessary to push the
aliasing curve to the right by increasing F. To do this,
DT is decreased by increasing N. The results for N= 32
are given in Fig. 12. Here, the effect of the doubled F is
shown to decrease the error in the range 0.f< F/2.
The above theorem and computation also show how

to compute Laplace transforms by using the Fourier
transform. The example can be regarded as the case
where one is computing the Laplace transform a*(s) of
the step function u(t)=0 for t<0 and u(t)=1 for t>0.
Then, letting the transform variable be s = 1+ 2rif, the
Laplace transform is the integral treated above and

1
a(f) = a*(s) = -

S

Theorem: Suppose
JCO

x(t) J aff)e27jift df

We write: xit) 4-> a(f) .

Assume values of T, At, F, Atf, N such that

T NAt - 1/Af
F - N-Af = 1/At

Construct periodic functions:

xp(t) x(t) +xl t + T) + x(t - T) + x(t + 2 T) + x(t - 2 T) +...

for 0 t T

ap(f)- af) + a(f+ F) + a(f - F) + alf + 2xF) + alf -2 x F) +

for 0' f F

Let:
An - apn-Atf)
x1 T xp(j-At)

Then:

Xi <-v.An

Fig. 10. Relation between discrete finite Fourier transform
and integral Fourier transform.
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Fig. 11. Calculation of DFT of e-I with N=16.

It should be noted that there is a serious problem in
the above example. This is that the function a.(f) does
not exist if the a,(f) is defined by the sum formula; the
sum does not converge for a*(s) = l/s. There is, how-
ever, a way of defining ap(s) so that it turns out to be the
function computed here. This will not be discussed iti
detail now; we will just mention what one must do in the
calculation to invert the Laplace transform, i.e., to
compute x(t) from a(f). For this, instead of treating the
transform pair x(t), a(f) as defined above, one can treat
the pair x(t) +x(-t) and 2 - Re a(f). The latter is a func-
tion for which the aliased function does exist. We are
actually using the fact here that a causal function, i.e.,
one for which f(t) = 0 for t <0, is completely determined

I. .I
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Convolution:

N-1

i E Xk Yj-k
i.e.,

ZO\ YO YN-1 YN-2 ...Y / Xo

I1 N0 1- 2 X

Z2 _ Y2 Y1 YO Y3 X2

ZNO 'YN-1 YN-2 YN-3 *.. YO XN-1

Theorem: If
Xj An
Yj B

z; C

then

Cn - N An Rn

Fig. 13. Convolution theorem.

0

K K K K . - -

3 4

Ff2

Fig. 12. Calculation of DFT of e-t with N=32.

by either the real or imaginary parts of its Fourier
transform. The real part of a(f) happens to be summable
when sampled.

USE OF THE CONVOLUTION THEOREM

Most of the very important applications of the FFT
involve the use of the convolution theorem. This
theorem for discrete finite Fourier transforms is defined
in Fig. 13. This simply states that the finite Fourier
transform of the convolution is the product of the finite
Fourier transforms of the two functions. A similar
theorem holds for continuous functions, and in such a

case, if the convolution integral were approximated by a

sum formula, one would indeed obtain approximately
the expression given in Fig. 13. However, as in the case

of the inversion formula, these formulas are exact and
are not simply numerical approximations of integrals.
An important aspect to be noted in connection with

the convolution theorem is that while the convolution
takes a number of operations proportional to N2 by the
direct method, the FFT method requires a number of
operations proportional to N log N. The latter method
consists in Fourier-transforming the two sequences

Xj and Yj to the frequency domain, multiplying the
frequency functions A. and B, and transforming the
product back. Note that, from here on, subscripts will
be used on sequence elements.

For the convolution theorem to hold, it is necessary

that sequences be periodic and of period N. Therefore,
the convolution obtained is defined as if one is to define
Y as the periodic repetition of its values on 0, N-1

N-1

Zj E XkYj+k
k10

Then Cn -N A-n Bn

zo\
N'0 N1 N-3 N-2 YN x0\

Z N'21 N2.3* NN-2 n-1 X1

Z2 | Y2 Y3 ... YN-1 YO Yi

ZN 1 YN-1 y" "I YN-4 YN-3 YN-2 XN-

For Zo. Z -° ZL tobe correct, X must have L

trailing O's. If N' is length of original sequence,

Ng, OpS. in sum opf prgouts method (N'-U2)(L+1l)
No. Ops. in F. T. rim thod 3(N'+L)l102lN'+L)

Fig. 14. Lagged products.

when the subscript of YJ-k goes out of the range 0 to
N-1. In many actual situations, however, one really
wants to assume the data to be zero or equal to their
average value outside the region in which they are given.
One then uses the simple expedient of lengthening the
array by appending zeros or an average value and let-
ting N of the present discussion be the length of the
augmented array. The number of appended zeros, of
course, depends upon how many lags or values of Zj are

wanted, and the number of nonzero values in the arrays.
Fig. 14 illustrates a slight variation on the convolution

theorem obtained by replacing k with -k. As described
in the figure, the last L values of the Xk vector will be
multiplied by values in the periodic repetition of the Yk
vector in the calculation of Zo, Z1, *, ZL. Therefore,
if the last L values of Xk are zero, the convolution will
not be affected by the periodic nature of the sequences.
The formula for the speed ratio is given at the bottom

of the figure; this is seen to be the number of operations
in evaluating the convolution by the conventional

1.
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TABLE III
NUMBER OF OPERATIONS REQUIRED TO COMPUTE LAGGED PRODUCTS BY FOURIER TRANSFORM METHOD AND SPEED RATIO, I.E.,

THE NUMBER OF OPERATIONS BY THE CONVENTIONAL DIVIDED BY FOURIER TRANSFORM METHODS

N+L*

128
256
512
1024
2048
4096
8192
16384
32768
65536

FT Method

2688
6144
13824
30720
67584
147456
319488
688128
1474560
3145728

L=32

1.0
1.1
1.1
1.1
1.0
0.9
0.8
0.8
0.7
0.7

L =64

0.8
1.7
2.0
2.0
1.9
1.8
1.7
1.5
1.4
1.4

* N= original record length. L = number of lags.

L= 128

1.3
3.0
3.5
3.5
3.4
3.2
3.0
2.9
2.7

Speed Ratio

L=256

2.4
5.4
6.3
6.5
6.3
6.0
5.6
5.3

L=512

4.3
9.7
11.6
11.9
11.6
11.1
10.6

L= 1024

7.8
17.8
21.4
22.1
21.7
20.9

L = 2048

14.2
32.8
39.6
41.3
40.7

L

£j= Xkyj.k
k-0

N- I3 .

,X2;t~~~~~=L- I XI

xl
x3

j=L-I

Number of Operations per Filter Output:
By Sum of Products:

By Fourier Transform Method: No. Operatiyms , 2Nlo2N
No.Filter uutputs N-1.

Fig. 15. Digital filtering.

method, divided by the number of operations taken by
the FFT method when N' is the length of the original
sequence and L is the number of lags required. Values of
this ratio for various N' and L are given in Table III.

It should be pointed out that for short sequences and
few lags, the conventional method is more efficient. A
turnover point is at L = 32. For L less than or equal to
32, one will at best only improve the speed by a factor
of 1.1, and for some N' values the FFT method will
take longer. For L = 64, unless N is as small as 64, one

can obtain an improvement which as much as doubles
the speed. Then, for high L, one gets higlh speed ratios,
such as the 41 for N' = 32768, L = 2048.
An application to digital filtering is described in

Fig. 15. This is again an example of a convolution calcu-
lation and corresponds to a situation where one may

have a signal whose sampled values are the values of Yj,
and a filter with a point spread function described by a

shorter sequence Xj of its sampled values. The output
of such a filter is the sequence Zj, the convolution of X

TABLE IV
TABLE OF VALUES OF 2Nlog2N/(N-L)*

N
L

16 32 64 128 256 512 1024 2048 8192

8 16 13 14 15 17 18
16 20 16 16 17 19
24 19 17 18 19
32 18 18 19
64 21 21 21
96 26 22 22 23
128 32 24 23 24

1024 30

* 2Nlog2N/(N-L) is the approximate number of complex
multiply-adds required to comptute each digital filter output for seg-
ments of length N'= N-L where L is the number of filter weights. L
is the number of operations per output by the direct method, and it
is to be compared with table entries in evaluating the two methods.

and Y. Suppose the input signal is infinite in extent in
both directions in the time domain. One then divides the
input signal into time slices of N samples each, where N
is chosen at one's convenience. Each such N-point
sequence is Fourier-transformed and its transform is
multiplied by the transform of Xj; the result is then
transformed back to yield a filtered signal for that block
of data. Now, due to the periodic nature of the convolu-
tion, the first L values of Zj will have beenconvolved
with the periodic repetition of the Yj sequence and
thereby contaminated. However, one can discard these
values and take the blocks of N values of Y1 so that they
overlap by an amount L.
To determine the block size N which minimizes the

amount of arithmetic, one writes the formula for the
number of operations per filter output. Two Fourier
transforms are required, for which a conservative esti-
mate of 2N log2 N operations is assumed. There will be
N-L good filter outputs, so that the number of opera-
tions per filter output is 2N log2 N/(N-L). This is to
be compared with L, the number of operations by the
conventional method. From the numerical values given
in Table IV, it is seen that at L= 16, the best N is
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N= 128; however, the amount of computation consists
of 16 operations, the same as that required by the con-
ventional method. As one goes to higher L, the optimal
N increases and the speedup ratio goes up. For example,
at L = 128, a value of 1024 is obtained for N, so that the
FFT method is almost six times as fast.

SUMMARY

It has already been found that the use of the FFT
methods has greatly increased the effectiveness of digital
methods for a very wide range of problems such as
spectral analysis, signal processing, Fourier spectro-
scopy, image processing, and the solution of differential
equations.
Most efforts of the past several years have involved

the reprogramming of previous procedures for the sake
of economy in computer usage. Recent developments
have been in the application of Fourier methods to
problems which, due to computational effort, would not
be tractable were it not for the use of the FFT method.
Among these are the real-time digital Fourier methods,
for which special-purpose computers are now being
built. There are a number of areas in which a large
amount of future development can be anticipated.
Among these are the problems of the numerical solution
of differential equations, image processing, and multiple
time series analysis and filtering.
The preceding material has been a very rapid survey

of the fast Fourier transform algorithm and of some of

its applications. A much more detailed treatment is
given in [5 ].
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Methods for Processing Complex Waveforms Through

Filters for Use in Monte Carlo Noise Studies

MURLAN S. CORRINGTON, FELLOW, IEEE, T. C. HILINSKI, AND W. B. SCHAMING

Abstract-Any N-pole linear lumped-constant time-invariant net-
work can be represented by a linear homogeneous difference equa-
tion. If an arbitrary input waveform is sampled at equally spaced time
intervals, so that eight or more samples are available at the highest
significant frequency present, the output waveform can be computed
in a £imple manner from the difference equation. If K input samples
are to be filtered, the saving in computer time, when compared to the
usage of the convolution integral, is equal to K. The method is illus-
trated by the simulation of an FM receiver, operating at threshold, in
the presence of Gaussian noise.
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INTRODUCTION
E ) IGITAL-COMPUTER simulation of electrical

networks responding to signals contaminated by
noise can be done by numerical integration using

the convolution integral. This method is not very useful
if long streams of sampled data are to be filtered, since
the number of points required in the integrand increases
linearly with time, and the computer time required is
too great. It is not possible to update the previous cal-
culation after each new input sample; all of the ordinates
of the integrand must be recomputed and integrated
each time.
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