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Abstract: Chaotic synchronization in master-slave networks has been extensively studied in
the last years, with a relevant impact in application domains like communication systems and
the modeling of neuronal and other biomedical signals and systems. Many recent papers have
shown that chaotic synchronization is easily lost when there is additive noise in the link between
master and slave. This lack of robustness can simply derail the use of chaos-based communication
systems in non-ideal environments. In the present work we employ a bio-inspired optimization
technique to increase the signal-to-noise-ratio of the chaotic signal that arrives in the slave
node of a master-slave discrete-time network and we show that this technique can improve the
robustness of the chaotic synchronization to noise.

Keywords: Synchronization, Optimization problems, Chaos, Noisy channels, Discrete-time
systems

1. INTRODUCTION

Since Pecora and Carroll’s seminal work (Pecora and Car-
roll, 1990), much has been written about the potential
usefulness of chaotic synchronization in contexts like com-
munication systems (Carroll and Pecora, 1991; Pecora and
Carroll, 1991; Wu and Chua, 1993; Koh and Ushio, 1997;
Rulkov and Tsimring, 1999; Baptista et al., 2000; Tôrres,
2007; Grzybowski et al., 2011) and modeling of biological
and artificial neural networks (Faure and Korn, 2001; Tang
et al., 2011; Qi et al., 2008)), as well as many other signal
and systems (Strogatz, 2004).

In this paper, we focus on chaotic synchronization of a
masterslave structure constituted by identical discrete-
time multidimensional maps, where the slave system is
driven by a signal derived from the master (Rulkov and
Tsimring, 1999; Eisencraft et al., 2009). This set-up is
a discrete-time version of the synchronization method
proposed by Wu and Chua (1993). In this network, the
synchronization error decays exponentially, being identical
synchronization obtained after a few iterations (Eisencraft
et al., 2009). However, when there is additive noise on the
link between master and slave, the sensitive dependence on
initial conditions that characterizes chaotic signals ampli-
fies this error and synchronization is no longer obtained
(Eisencraft and Batista, 2011; Eisencraft et al., 2011).
This problem can have a significant practical impact: in
⋆ M.E. is partially supported by the Brazilian National Council for
Scientific and Technological Development (CNPq).

chaos-based communication systems, for instance, it would
lead to a decrease in que quality and/or in the rate of
information exchange (Grzybowski et al., 2011).

Bearing this in mind, in the present work we numeri-
cally investigate an alternative to decrease the master-
slave synchronization error when there is Additive White
Gaussian Noise (AWGN) between master and slave: to use
a denoising technique based on an evolutionary approach
proposed by Soriano et al. (2011) to increase the signal-to-
noise ratio (SNR) of the signal that arrives on the slave.

Evolutionary algorithms have been successfully employed
in different contexts related to chaotic dynamics, including
control, attractor reconstruction, synchronization, cryp-
tography (Zelinka et al., 2010) and system identifica-
tion(Gao et al., 2009). In this paper we take advantage of
the flexibility of the global search potential of an algorithm
of this class, an artificial immune system (de Castro and
Timmis, 2002; de Castro, 2006), to find a trajectory that
be as close as possible to the noiseless transmitted signal.

This paper is organized as follows: in Section 2, we present
the considered master-slave models, and, in Section 3, we
succinctly describe the employed denoising technique. In
Section 4 some numerical results are iscussed and, finally,
in Section 5, we expose the conclusions and perspectives
for future works.
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2. DISCRETE-TIME CHAOTIC SYNCHRONIZATION

Wu and Chua (1993) address chaotic system synchroniza-
tion differently from the seminal paper by Pecora and Car-
roll (1990). Instead of using conditional Lyapunov expo-
nents to check the asymptotic stability of the slave system
and hence the possibility of synchronism, Wu and Chua
propose that the master and slave equations be written
in such a way that the dynamics of the synchronization
error is simple enough to permit the direct verification of
its convergence to zero. The adaptation to discrete-time
systems, proposed by Eisencraft et al. (2009), is succinctly
described in the following.

Consider two discrete-time systems defined by

x(n+ 1) = Ax(n) + b+ f(x(n)) (1)

y(n+ 1) = Ay(n) + b+ f(x(n)) (2)

where {x(n),y(n)} ⊂ RK , x(n) = [x1(n), . . . , xK(n)]
T
,

y(n) = [y1(n), . . . , yK(n)]
T

and n ∈ N. The real-valued
matrix AK×K and the vector bK×1 are constants. The
function f(·), RK → RK is nonlinear.

The system described by Eq. (1) is autonomous and is
called master. The one described by (2) depends on x(n)
and is called slave.

The dynamics of the synchronization error between the
two systems e(n) = y(n)− x(n), in this case, is given by

e(n+ 1) = Ae(n). (3)

They are said completely synchronized if e(n) → 0 as n
grows. Consequently, master and slave synchronize com-
pletely if the eigenvalues λi of A satisfy (Agarwal, 1992)

|λi| < 1, 1 ≤ i ≤ K. (4)

Hence, if a system can be written as in Eq. (1) with A
satisfying the condition defined in Eq. (4), it is easy to set
up a slave system that synchronizes with it.

In our numerical examples we employ, in the role of chaos
generator the two-dimensional Hénon map (Hénon, 1976)

x1(n+ 1) = 1− αx2
1(n) + x2(n) (5)

x2(n+ 1) = βx1(n). (6)

where α and β are constants. In this case, the master can
be written in the form of Eq. (1) with A as

A =

[
0 1
β 0

]
, (7)

b = [1; 0] and f(x(n)) = f(x1(n)) =
[
−αx2

1(n); 0
]T

. Thus,
only the scalar signal x1(n) must be transmitted from
master to slave.

The eigenvalues of A are λ1 = −λ2 =
√
β. So there is

master-slave synchronization whenever |β| < 1.

Now we consider that the signal that arrives at the slave
is not x1(n) but r(n), given by

r(n) = x1(n) + w(n) (8)

where w(n) is a zero-mean AWGN process with power σ2
w.

In this case, the receiver is described by

y1(n+ 1) = 1− αr2(n) + y2(n) (9)

y2(n+ 1) = βy1(n). (10)
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Fig. 1. Block diagram of the synchronization set.
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Fig. 2. Chaotic synchronization: Master and slave states
x1(n), y1(n) and Mean-squared error |e(n)|2 for γ =
+∞ ((a) and (c)) and γ = 15 dB ((b) and (d))

This setup is represented in block diagram form on Figure
1.

Now, the synchronization error is not given by Eq. (3)
anymore, and complete synchronization is no longer at-
tainable. Figure 2 shows x1(n), y1(n) and |e(n)|2 for the
noiseless case (σ2

w = 0) and for an SNR γ = 15dB. The
SNR is defined here as

γ(dB) = 10 log

(
s2(n)

σ2
w

)
(11)

where s2(n) is the mean-squared value of s(n), the trans-
mitted signal.

As Figure 2 shows, for a noiseless channel (γ = ∞),
complete synchronization is quickly attained. However, in
this example, for a relatively high SNR of 15dB, which
means that the noise power is approximately 3% of the
power of s(n), |e(n)|2 ≈ 10−1, which is approximately 17%
of the mean value of |y(n)|2. Thus, a small additive noise
in the transmitted signal can result in a significant higher
synchronization error due to the feedback and intrinsic
nonlinearity of the involved systems.
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This nonlinear effect of channel noise in the synchroniza-
tion error is certainly one of the factors responsible for
the relatively poor performance of digital communication
systems based on chaos coherent compared to their con-
ventional counterparts in terms of bit error rate in AWGN
channels (Williams, 2001).

In the next sections we apply the denoising approach
proposed by (Soriano et al., 2011), succinctly described in
Section 3, to increase the channel SNR and, consequently,
reduce the synchronization error.

3. DENOISING OF CHAOTIC TIME SERIES USING
AN EVOLUTIONARY APPROACH

Under the premise that the system model F (x,p) underly-
ing the observed signal is known, but not its free parameter
vector p and initial condition x0, it is possible to obtain
a denoising method based on a trajectory identification
procedure (Soriano et al., 2011).

In order to reduce the noise in the observed signal one
could try to estimate the true parameters and initial
conditions of the system, which would allow a perfect
reconstruction of the deterministic orbit, thus eliminating
the noise. However, it is well known that any attempt to
estimate the initial condition would lead to a determinis-
tic orbit that inevitably exponentially diverges from the
observed one, given the finite precision of the estimate of
the initial state and the chaotic nature of the system.

Therefore, in (Soriano et al., 2011), the authors proposed a
piecewise estimation, i.e., for each segment of Ns samples
of the observed signal, a set of parameters and initial
conditions is obtained and an orbit close to the true one
is reconstructed. Mathematically, the task consists in the
following minimization problem:

argmin
x0,p

{fscore(x0,p) = [
1

Ns

Ns∑
n=1

(s′(n)− r(n))2]} (12)

where x0 and p are, for the Hénon map, x0 = [x1(0) x2(0)]
T

and p = [α β]T ). In simple terms, the idea is to minimize
the score function fscore(·) given by the mean-squared
error between a candidate chaotic time series solution
s′(n) (dependent on the optimization parameters) and
the observed vector r(n). The candidate solution s′(n) is
obtained by solving (iterating or integrating) F(x,p) given
the parameter vector p and initial condition x0.

In order to optmize the cost function presented in (12), the
authors employ a search heuristic that uses the immune
system as an inspiration, an optimization approach that
has a significant global search potential (de Castro and
Timmis, 2002; de Castro, 2006), explained in the following.

3.1 Optimization by Artificial Immune System

Artificial immune systems (AIS) correspond to a bio-
inspired computational strategy that uses concepts derived
from the study of immune systems of superior organisms
(de Castro and Timmis, 2002; de Castro, 2006). It has
several applications to engineering problems, and is par-
ticularly useful for optimization, presenting a good perfor-

mance in terms of global convergence rate even in problems
with significant multimodality.

Among the various AIS employed for solving optimization
tasks, we decided to employ, in this work, a version of
the CLONALG algorithm (de Castro and Zuben, 2002)
adapted to operate with real coding. This choice was
motivated by two features of this tool: 1) a relatively
simple modus operandi and s) an interesting balance
between local and global search mechanisms.

The modus operandi of the CLONALG is based on two
conceptual pillars: clonal selection and affinity matura-
tion (de Castro and Timmis, 2002). The clonal selection
principle establishes that, when an organism is invaded
by antigens (e.g. virus or bacteria), specific cells of the
immune system recognize the exogenous element and are
selected to proliferate, which gives rise to a cloning process
with rates proportional to the affinity - defined by some
measure of recognition - of these cells to the antigens. In
the affinity maturation process, the individuals produced
in the current generation can exhibit mutations with rates
inversely proportional to their affinity with the antigens,
and the mutated generation can eventually present indi-
viduals with higher affinity (de Castro and Timmis, 2002;
de Castro and Zuben, 2002).

To effectively convert these ideas into an efficient opti-
mization algorithm, it is necessary to make some consider-
ations. First, each candidate solution to the optimization
problem corresponds to an individual, that is, a vector of
real values that represents, in simple terms, the structure
of an immune cell. The quality of an individual (called
here fitness measure) is defined by the cost function (with
the caveat that it is necessary to convert minimization
into maximization), providing means of quantifying the
antibody-antigen affinity (de Castro and Timmis, 2002;
de Castro and Zuben, 2002).

Finally, there is also a periodic insertion of new randomly-
generated individuals to replace individuals with poor
fitness in order to perform a better exploration of the
search space. These steps can be summarized in the
CLONALG (de Castro and Zuben, 2002) pseudo-code
shown in Algorithm 1.

In our simulations, after a number of preliminary tests, we
decided to use N = 50 individuals and Nc = 20 clones.
An adaptive value of η - which represents the mutation
rate - was used. η was initially defined as 1 and, after
half of the total number of generations (which was set in
4000), it linearly increased until a final value of 1000 was
reached. It is also valuable to remark that the algorithm
parameters (as N , Nc, η, number of generations) define
its performance and some numerical experimentation is
recommended before setting these parameters (for more
details, see (Soriano et al., 2011)). In this case, some
“thumb-rules” or heuristic settings can be applied to
perform a reasonable search, which consists in one of the
major issues in bio-inspired optimization (de Castro and
Timmis, 2002).

It is important to note that the CLONALG algorithm
performs the maximization of a fitness measure (defined as
JFIT ) and not the direct minimization of the cost function
presented in Eq. (12). Hence, we have used the following
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relation between the cost function and the fitness measure
to be maximized, Eq. (14):

JFIT =
1

fscore(x0,p)
(14)

4. SIMULATION RESULTS

In order to assess the possible gain of employing a de-
noising technique in the synchronization of two dynamical
systems, we considered the scenario depicted in Fig. 1. For
an observation vector with 200 samples obtained from the
Hénon map, we have applied the denoising methodology
described in Section 3, considering an estimation window
of Ns = 10 samples. Once a denoised version s′(n) of the
received signal is obtained, it is used as the input of the
slave system, as indicated in Fig. 1. The synchronization
error is then evaluated, and is defined by

SyncError =
1

180

200∑
n=20

||x(n)− y(n)| |2 (15)

where x(n) and y(n) denote, respectively, the state vectors
of the master system and slave system. The summation
starts with n = 20 in order to discard the transient in the
synchronization process.

As mentioned earlier, the denoising procedure employs a
piecewise estimation of the received signal, thus obtaining
a set of parameters and initial conditions for each estima-
tion window. Even though it would not be possible to per-
fectly estimate the parameters and the initial conditions
due to the chaotic nature of the system and the noise, the
obtained parameters fluctuate around the true ones used

[CLONALG]

Algorithm 1. Pseudo-code for CLONALG algorithm

(1) Randomly initialize the population (N);
(2) Determine the fitness of each individual: JFIT ;
(3) While the maximum number of generation is not

attained, do
(a) Create Nc clones for each individual;
(b) Keep the original individual, and apply a muta-

tion process for each clone as described in Eq.
(13):

c′ = c+ ϵY (0, 1) (13)

ϵ=
1

η
exp(−JFIT )

where c′ and c represent the clones modified
by mutation and the original one, respectively.
Y (0, 1) represents Gaussian random variable with
zero mean and unitary variance and η represents
a control parameter to establish the applied mu-
tation;

(c) Evaluate the fitness of each individual of the pop-
ulation and keep in the population only the best
solution of each group given by the individual and
its derived mutated clones;

(d) At each t generations, eliminate the m elements
with lowest fitness and substitute them by ran-
domly generated individuals;

(4) Return to the step 3.
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Fig. 3. Synchronization MSE for different values of γ.

to generate the transmitted signal – α = 1.4 and β = 0.3,
as indicated in Fig. 4, which depicts the evolution of the
estimated parameters along the various segments of the
signal. As a matter of fact, this observation was used to
increase the convergence speed of the algorithm. Instead
of randomly initialize all parameters for each estimation
window, the estimated parameter values for one data win-
dow were used as the initial values for the parameters in
the subsequent estimation window.

Fig. 3 shows the synchronization error for different values
of γ, and it becomes clear that the denoising procedure
is effective for a wide range of noise levels (γ > 10dB).
In other words, it means that the CLONALG algorithm
was able to obtain a set of parameters that allowed a
very reasonable reconstruction of the original trajectory,
thus enhancing the synchronization performance of the
slave system. For this range of SNR, it can be noted that
the denoising method exhibit a 3dB gain with respect to
the non-processed data, i.e., it is possible to achieve the
same synchronization error with an SNR 3dB lower, which
represents a significant improvement.

For low γ values, it was not possible to obtain the same
performance level achieved for higher SNR. This limitation
is partially explained by the fact that the CLONALG
parameters were kept the same for all SNR values - in
a practical situation, if we know in advance that the SNR
is not so high, these parameters could be adjusted and a
better synchronization error would be obtained.

5. CONCLUSIONS

In this work we employ a bio-inspired optimization tech-
nique to increase the signal-to-noise-ratio of the chaotic
signal that arrives in the slave node of a master-slave
discrete-time network. The simulation results show that,
for a wide range of SNR values, the proposed methodology
is able to increase the channel SNR, thus reducing the syn-
chronization error of the slave system. Moreover, despite
of the computational cost of the employed optimization
approach, we hope that the advent of greater computer
resources and the development of more efficient optimiza-
tion techniques can provide a promise real time signal pro-
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among the estimation windows.

cessing environment for evolutionary chaotic time series
denoising.

This encouraging results indicate many possibilities to be
explored in future works, which include the evaluation of
the methodology for different dynamical systems, and its
application in chaos-based communication systems with
the aim of understanding how the denoising procedure
would affect the bit error rate (BER) of the system.
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Tôrres, L.A. (2007). Discrete-time dynamic systems
synchronization: information transmission and model
matching. Physica D: Nonlinear Phenomena, 228(1),
31 – 39. doi:10.1016/j.physd.2007.02.002.

Williams, C. (2001). Chaotic communications over radio
channels. Circuits and Systems I: Fundamental Theory
and Applications, IEEE Transactions on, 48(12), 1394
–1404. doi:10.1109/TCSI.2001.972846.

Wu, C.W. and Chua, L.O. (1993). A simple way to
synchronize chaotic systems with applications to secure
communication systems. International Journal of Bi-
furcation and Chaos, 3(6), 1619–1627.

Zelinka, I., Celinkovsky, S., Richter, H., and Chen, G.
(2010). Evolutionary Algorithms and Chaotic Systems.
Springer.

Proceedings of the third IFAC CHAOS Conference 
Cancún (México) June 20-22, 2012

Copyright by the 
International Federation of Automatic Control (IFAC) 

132




