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Resumo— Nos cursos introdutórios de Engenharia, a análise de sistemas de controle em malha fechada com
perturbação aditiva geralmente envolve dispositivos eletromecânicos. Tais sistemas de controle merecem ser
estudados pela sua própria importância, mas o significado dessa análise pode-se enfatizada, por meio de alguns
exemplos fora dos domı́niosda Engenharia pura. Nesse artigo, propoe-se um modelo simplificado do sistema
termorregulador de aves e mamı́feros que é responsável pelo controle de temperatura, de modo a mostrar como
os conceitos-chave de sistemas em malha fechada podem emergir em um contexto diferente. As nossas expectativas
são melhorar e dar caminhos alternativos para o estudo deste tipo de sistemas de controle.

Abstract— In introductory engineering courses, the analysis of closed-loop control systems with additive
disturbance usually involves electromechanical devices. Such control systems deserve to be studied by their
own merits, but the significance of this analysis might be highlighted by means of some examples outside the
pure engineer domains. Here we propose a simplified model of the avian/mammalian thermoregulatory system
responsible for temperature control in order to show how the key concepts of closed-loop systems could emerge
in a different context. Our expectations are to improve and to give alternative paths for the study of this type
of control systems.

Keywords— Dynamical Systems Applications, Thermoregulatory Model, Disturbance Analysis, Closed-loop
Control Systems

1 Introduction

In introductory courses on classical control the-
ory, students learn that closed-loop systems are
less sensitive to perturbation than the correspond-
ing open-loop ones. Such a conclusion is usually
drawn by analyzing, for instance, a feedback con-
trol system with an additive disturbance, as shown
in Fig. 1 (e.g. (Dutton et al., 1997; Franklin
et al., 2005; de Klerk and Craig, 2004; Kuperman
and Rabinovici, 2005)). In such a scheme, the con-
trolled variable C(s) of the process is measured by
the sensor H(s) and compared with the reference
R(s). The difference R(s)−H(s)C(s), called sys-
tem error E(s), feeds the compensator G(s), and
the compensator output is the signal actuating on
the process. The steady-state error is affected by
R(s) and by the external disturbance D(s) added
to the process output.

In undergraduate engineering classes, the
block diagram shown in Figure 1 usually involves
electromechanical devices, like satellite attitude
control systems (e.g. (Franklin et al., 2005))
or electric motors (e.g. (Kuperman and Rabi-
novici, 2005)). In order to enrich the presentation
of possible systems of this type in a different con-
text, here we derive it for a simplified model of the
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Figure 1: The block diagram represents a general-
ized feedback control system with additive distur-
bance D(s). The controlled variable C(s) of the
process is required to track the reference input
R(s). The tracking error E(s) = R(s)−H(s)C(s)
is the input to the plant.

thermoregulatory system responsible for tempera-
ture control in birds and mammals. Even though
we focus in some aspects of a biological tempera-
ture control system, there is a vast area of different
purposes related to this matter. For instance, the
design of temperature control systems is obviously
important in industrial applications (e.g. (de Mi-
randa Montenegro et al., 2006; Salau et al., 2005)).

Our biological model follows from Newton’s
law of cooling, which states that the rate of en-



ergy exchange due to heat transfer of a body is
proportional to the difference between body tem-
perature and surrounding (ambient) temperature.
It incorporates the physiological feature of those
animals that, in their majority, rely on metabolic
energy conversion for the maintenance (regula-
tion) of a somewhat limited range of body tem-
perature throughout the day. These two features,
i.e., metabolic energy conversion for thermoregu-
lation and a limited range of body temperature,
are named endothermy and homeothermy, respec-
tively.

The proposed thermoregulatory model is de-
scribed in Section 2 and its behavior is analytically
determined in Section 3. In Section 4, the main
conclusions are presented.

2 A Thermoregulatory Model

A very basic fact about body temperature is that
it represents, at any given time t, a balance be-
tween the amount of energy received or produced
by an animal and the energy lost to the surround-
ings, either actively or passively.

In the case of endothermic animals, body tem-
perature Tb(t) is actively regulated by the control
of both energy production – by shivering and non-
shivering thermogenesis – and energy loss – by
mechanisms of thermal exchange, as changes in
posture, peripheral blood perfusion and evapora-
tive water loss. Notice that we will not discuss
Tb long-term regulation related to changes in fur
or feathers, dermal fat thickness etc. Also, body
temperature control in mammals resides, mainly,
in hypothalamic centers, while in birds there are
other peripheral controllers; therefore, we will re-
fer simply to a “temperature controller” in a gen-
eral sense in the text.

In this way, for an endotherm to maintain a
constant body temperature (homeothermy), en-
ergy production must equal energy loss by heat.
Without loss of generality in the present con-
text, we will assume that Tb(t) is homogeneous
throughout the organism. Then, a simple model
of body temperature variation would be given as
the difference between Tb(t) and environmental
temperature Ta(t) generating an energy loss to
the surroundings proportional to the thermal con-
ductance1 χ (Jo C s−1); the difference between
such a loss and the energy input represented by
the metabolic rate M (J s−1) results in a Tb(t)
(oC) variation inversely proportional to the prod-
uct of body mass B (g) and the mean specific heat
of tissues C (J g−1oC−1) (Cooper, 2002; Chaui-
Berlinck et al., 2005). Mathematically we could

1Representing a general term of thermal conductance
that may occur by conduction, convection, radiation and
water evaporation.

write:

dTb(t)

dt
=

1

BC
(hM(t)− χ (Tb(t)− Ta(t))) . (1)

The dimensionless coefficient h is the ineffi-
ciency in metabolic energy conversion, thus repre-
senting the amount of energy available to increase
body temperature, 0 < h ≤ 1. Observe that 1− h

is the useful work done by the system, i.e., the
organism, in the surroundings.

In order to regulate body temperature,
metabolic rate M increases as the difference be-
tween a set-point and the core temperature in-
creases, so the time variation of metabolic rate
can be expressed, in our minimalist linear model,
as:

dM(t)

dt
= K (Ts(t)− Tb(t)) (2)

where K is the gain in the closed control loop and
Ts is the set-point temperature of the organism.

3 Analytical Results

3.1 Stability analysis

Let Ta(t) and Ts(t) be constants. The eigenval-
ues λ of linear system (1)-(2) are obtained from
(Monteiro, 2011):

det

(

−
χ

BC
− λ h

BC

−K 0− λ

)

= 0. (3)

Thus, linear system (1)-(2) has the characteristic
polynomial:

λ2 +
χ

BC
λ+

Kh

BC
= 0 (4)

which has the roots:

λ1,2 =
−χ±

√

χ2 − 4KhBC

2BC
. (5)

Given that the parameters χ, B, C and h in Eq.
(1) are always positive numbers, then both eigen-
values in (5) have negative real parts (that is,
Re (λ1) < 0 and Re (λ2) < 0). Therefore, the
system (1)-(2) is always asymptotically stable and
the way Tb(t) tends to Ts depends only on the sig-
nal of χ2 − 4KhBC: if χ2 − 4KhBC < 0, then
the system is underdamped (thus, Tb(t) tends to
Ts by oscillating around Ts); if χ

2 − 4KhBC > 0,
then it is overdamped (Tb(t) exponentially tends
to Ts); if χ

2−4KhBC = 0, it is critically damped
(this is the fastest way that Tb(t) can converge to
Ts without overshoot, which is typical of under-
damped systems).

3.2 Disturbance Analysis

By applying Laplace transform to Eqs. (1) and
(2), we obtain the following system in the s-



domain:

Tb(s) =

(

h

BCs+ χ

)

M(s) +

(

χ

BCs+ χ

)

Ta(s)

(6)

M(s) =
K

s
(Ts(s)− Tb(s)) . (7)

It is represented by the block diagram in Fig. 2.
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Figure 2: Block diagram of the body tempera-
ture control system of Eqs.(6) and (7). The model
represents a feedback closed-loop system of body
temperature influenced by environmental temper-
ature as an input error.

The system (6)-(7) is clearly a closed-loop sys-
tem, and it is easy to check, by the block diagram
(Fig. 2), that variations in environmental temper-
ature are compensated by changes in metabolic
rate in order to maintain Tb near Ts.

By carrying out some algebraic manipulation
in (6) and (7), we obtain:

Tb(s) =
Kh

BCs2 + χs+Kh
Ts(s)+

χs

BCs2 + χs+Kh
Ta(s). (8)

In a closed-loop system, negative feedback
triggers a correcting response that opposes devia-
tions from the set-point. So, negative feedback is
the main attribute to a closed-loop system to act
as a regulatory system.

The metabolic control is given by the differ-
ence between body temperature and body tem-
perature set-point, representing the closure in the
negative feedback system. Therefore, by Eq (1),
if the organism is in energy equilibrium (energy
input equal to energy output), at a given time t,
then the following identity applies:

M(t) =
K

h
(Tb(t)− Ta(t)) . (9)

If we call the effects of ambient temperature as
disturbances in the model, we can, generically, an-
alyze the thermoregulation model (Eq (1) and (2))
and see how these disturbances affect Tb(t).

The generic closed loop model showed in Fig.
1 can be described by:

C(s) =
G(s)

1 +H(s)G(s)
R(s) +

1

1 +H(s)G(s)
D(s).

(10)

The thermoregulatory model in equation (8) has,
exactly, this form.

In face of this, next we show that, besides sta-
bilization of body temperature at the set-point,
the thermoregulatory system is also capable of re-
ducing disturbances induced by Ta(s).

By applying Laplace transform to the set-
point Ts(t) = S and to a fixed ambient temper-
ature Ta(t) = A (where S and A are constants)
leads to:

Ts(s) =
S

s
(11)

and:

Ta(s) =
A

s
(12)

Thus, our thermoregulatory model could now
be written as:

Tb(s) =

(

Kh

BCs2 + χs+Kh

)

S

s
+

(

χs

BCs2 + χs+Kh

)

A

s
. (13)

The error E(s) between set-point (11) and
body temperature (13) is given by:

E(s) = Ts(s)− Tb(s). (14)

Therefore:

E(s) =

(

BCs2 + χs

BCs2 + χs+Kh

)

S

s
−

(

χs

BCs2 + χs+Kh

)

A

s
. (15)

According to the Final Value Theorem for
Laplace transforms (e.g. (Nise, 2006)) as long as
E(s) does not have more than one pole at the ori-
gin and any poles in the right half of the complex
plane, then the steady-state error ess has as lim-
iting value:

ess = lim
s→0

[sE(s)]. (16)

In the present case, by using the error expressed
by (15), then:

ess = lim
s→0

[(

BCs2 + χs

BCs2 + χs+Kh

)

S−

(

χs

BCs2 + χs+Kh

)

A

]

. (17)

This way:
ess = 0. (18)

That is, body temperature tends to the set-point
value of the controller.

Now, let us analyze the case when ambient
temperature is not fixed. Our model, given by
Eq. (8), can be written as:

BCs2Tb(s) + χsTb(s) +KhTb(s) =KhTs(s)

+ χsTa(s).
(19)



By considering null initial conditions and ap-
plying the anti-Laplace transform, this expression
becomes:

BCT̈b(t) + χṪb(t) +KhTb(t) = KhTs + χṪa(t)
(20)

where the dot means derivative with respect to
the time.

In steady-state of Tb, i.e., when Ṫb(t) = 0 and
T̈b(t) = 0, we have:

Tb(t) = Ts +
χ

Kh
Ṫa(t). (21)

Therefore, in the cases where disturbances in am-
bient temperature are present, expression (21)
shows us that such fluctuations are attenuated in
systems that have a reduced thermal conductance
χ or an increased product Kh.

Numerical simulations of the thermoregula-
tory model, presented in Fig. 3, show how the
reduction in χ affects the temporal behavior of
body temperature in the presence of ambient tem-
perature oscillations.
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Figure 3: Body temperature under influence
of oscillating environmental temperature. As
expected, a reduction on thermal conductance
causes a reduction on the effects of external distur-
bances. Values used in the simulations are C = 1,
B = 50, K = 0.5, h = 0.4 and set-point tempera-
ture is 35 oC. Environmental temperature is given
by Ta(t) = 10 + 5 sin(t).

4 Conclusion

In the present work, we developed a model not
usually employed in undergraduate courses to ex-
plore some properties of feedback control systems.
We showed how a simple thermoregulatory model
can be used as a good example of such control
systems with an additive disturbance. This exam-
ple provides an alternative context to closed-loop
systems in general and, also, more particularly,
of feedback control systems where many key con-
cepts, as set-point and steady state error, emerge
almost naturally due to the biological processes
themselves.
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