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a b s t r a c t

The electroencephalogram (EEG) signal captures the electrical activity of the brain and is an important

source of information for studying neurological disorders. The proper analysis of this biological signal

plays an important role in the domain of brain–computer interface, which aims at the construction of

communication channels between human brain and computers. In this paper, we investigate the

application of least squares support vector machines (LS-SVM) to the task of epilepsy diagnosis through

automatic EEG signal classification. More specifically, we present a sensitivity analysis study by means

of which the performance levels exhibited by standard and least squares SVM classifiers are contrasted,

taking into account the setting of the kernel function and of its parameter value. Results of experiments

conducted over different types of features extracted from a benchmark EEG signal dataset evidence that

the sensitivity profiles of the kernel machines are qualitatively similar, both showing notable

performance in terms of accuracy and generalization. In addition, the performance accomplished by

optimally configured LS-SVM models is also quantitatively contrasted with that obtained by related

approaches for the same dataset.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

In the last decades, the electroencephalogram (EEG) signal,
which represents the electrical activity of the brain, has been
intensively studied. This is because it can convey valuable clinical
information about the current neurological conditions of patients,
being widely used in the study of the nervous system properties,
for monitoring sleep stages, and for the diagnosis of many
disorders such as epilepsy, sleep disorders, and dementia [1,2].
Moreover, the analysis and processing of this type of biological
signal has played an important role in the domain of brain–
computer interface [3], which aims at setting up communication
channels between human brain and computers.

Temporary electrical disturbance of the brain can cause epileptic
seizures. Sometimes seizures may go unnoticed, depending on their
strength, and sometimes may be confused with other events, such as
strokes, which can also cause falls or migraines. Unfortunately, the
occurrence of an epileptic seizure seems unpredictable and its
course of action is still very little understood [4]. So, more research is
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needed for a better understanding of the mechanisms causing
epileptic disorders.

Despite rapid advances of neuroimaging techniques, EEG
recordings continue to play an important role in both the
diagnosis of neurological diseases and the understanding of
psychophysiological processes. In order to extract relevant
information from recordings of brain electrical activity, a variety
of computerized-analysis methods have been developed. Most of
them assume that the EEG signal is generated by a highly complex
linear system, which results in characteristic properties like non-
stationarity and difficulty of prediction [5].

Recently, there has been a growing interest in applying
techniques from the domains of nonlinear analysis and chaos theory
for studying the behavior of experimental time series such as EEG
signals [5–9]. Moreover, many nonlinear classification methods have
been proposed. Among them, we can mention artificial neural
networks [4,10–19] and support vector machines (SVM), either for
two-class [3] or multiclass [20,21] EEG signal discrimination.

In particular, the application of SVM is justified for this type of
machine learning (ML) technique has shown to be quite
successful in coping with a number of complex data analysis
problems. The SVM approach is based on the structural risk
minimization principle, which asserts that the generalization
error is delimited by the sum of the training error and a parcel
that depends on the Vapnik–Chervonenkis dimension [22,23]. By
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minimizing this summation, high generalization performance can
be obtained. Besides, the number of free parameters in SVM does
not explicitly depend upon the input dimensionality of the
problem at hand. Another important feature of the support vector
learning approach is that the underlying optimization problems
are inherently convex and have no local minima, which comes as
the result of applying Mercer’s conditions on the characterization
of kernels [24].

In the literature, several derived formulations have been
proposed for SVM, seeking for advantages in terms of effective-
ness or efficiency criteria. In particular, Suykens and Vandewalle
[25], and Suykens et al. [26] have introduced the least squares
SVM (LS-SVM) classifier by modifying the standard formulation so
as to obtain a system of linear equations in the dual space. This is
done by taking a least squares cost function, with equality instead
of inequality constraints. Despite the fact that LS-SVM have
gained increased attention recently [27], our perception is that
their application to the automatic analysis of nonlinear biomedi-
cal signals has not been systematically investigated yet, with the
work of Kemal et al. [28] over electrocardiogram (ECG) data being
one of the first in this context.

It is important to stress that, although considered as high-
performance models, the efficiency and effectiveness underlying
the induction of SVM and LS-SVM depend critically on the
appropriate selection of values for some important hyperparameters
[29]. The fact is that a bad specification of such parameters may
jeopardize the applicability of these kernel machines. Some works
have already provided solutions to this problem, ranging from those
based on cross-validated model selection to those based on
extensive grid search or heuristic optimization rules [30,31].

In this paper, we present a thorough analysis regarding the
impact of the choice of the kernel parameter value on the
performance exhibited by LS-SVM and SVM classifiers induced for
EEG signal discrimination. Initially, we preprocess the dataset of
EEG signals [6,7] by extracting wavelet coefficients [10,13,16] and
then compute statistical metrics over the resultant data to create
the feature vectors. Such vectors serve as input to the kernel
machine (either SVM or LS-SVM), which provides the final
epilepsy/non-epilepsy decision. Several detailed graphs (referred
to as sensitivity profiles) are presented here enabling one to
visually inspect, for each combination of kernel type, kernel
parameter value and type of feature extracted, the accuracy/
generalization levels achieved by the machines in terms of
misclassification rate as well as sensitivity and specificity indices
[13]. In addition, given that the EEG dataset used in this paper has
also been explored by many researchers working in the
biomedical signal processing field [4,12–21], the classification
performance achieved by optimally configured LS-SVM models is
also quantitatively contrasted with that produced by related
approaches as reported in the literature.

The remaining parts of the paper are organized as follows. In
the next section, we describe the EEG benchmark data analyzed
and the techniques used to preprocess it. Moreover, we present
the mathematical formulations behind SVM and LS-SVM as well
as comment upon the importance underlying the choice of kernel
functions and parameters. In Section 3, we discuss the empirical
results achieved, showing the sensitivity profiles exhibited by
the machines and also providing a quantitative contrast, in terms
of accuracy, with related work. Finally, Section 4 concludes
the paper.
2. Materials and methods

In this section, the sets of EEG signals used in the experiments
are described. Also, spectral analysis of the EEG signals using
discrete wavelet transform (DWT) is explained and the statistical
features effectively extracted are presented. In a third part, the
mathematical formulations underlying the kernel machines
considered are given.

2.1. Dataset characterization

In this work, we have used the EEG data made publicly
available by Andrzejak et al. [6,7]. The complete dataset involves
five sets (denoted A–E), each containing 100 single-channel EEG
segments. All EEG signals from this dataset were recorded with
the same amplifier system, using an average common reference.
The data were digitized at 173.61 samples/s using 12 bit
resolution. Bandpass filter settings were 0.53–40 Hz (12 dB/oct).
Since in the experiments reported in Section 3 the kernel
machines investigated only discriminate between samples from
sets A and E, we focus on the description of these two sets in the
sequel. The reader should refer to Refs. [6,7] for further details on
the data acquisition process.

Set A consists of segments taken from signals recorded
extracranially during the relaxed state of healthy subjects with
eyes open. That is, surface EEG recordings were carried out on five
healthy volunteers using a standardized electrode placement
scheme, namely the International 10–20 system [2]. Then,
100 segments were selected and cut out from continuous
multi-channel EEG recordings (i.e., from all 20 electrodes
used—refer to Fig. 1 of Ref. [6] for the anatomical disposition of
these electrodes over the scalp) after visual inspection for
artifacts, due, for example, to muscle activity or eye movements.

In contrast, set E originated from an EEG archive of pre-surgical
diagnosis. That is, EEG time series recorded intracranially from
five patients were selected, all of whom had achieved complete
seizure control after resection of one of the hippocampal
formations, which was therefore correctly diagnosed to be the
seizure generating area. In this context, the implantation of
electrodes was carried out to exactly localize this area, termed as
the epileptogenic zone. The 100 specific segments that compose
set E were selected from all recording sites exhibiting ictal activity
(i.e., actual epileptic seizures) [6].

2.2. Data pre-processing

Wavelet transform is a spectral estimation technique in which
any general function can be expressed as an infinite series of
wavelets [4,10]. The basic idea underlying wavelet analysis
consists of expressing a signal as a linear combination of a
particular set of functions (wavelet transform), obtained by
shifting and dilating one single function called a mother wavelet.
The decomposition of the signal leads to a set of coefficients called
wavelet coefficients. Therefore, the signal can be reconstructed as
a linear combination of the wavelet functions weighted by the
wavelet coefficients. In order to obtain an exact reconstruction of
the signal, an adequate number of coefficients must be computed
[13,16].

The key feature of wavelets is the time–frequency localization.
It means that most of the energy of the wavelet is restricted to a
finite time interval. Frequency localization means that the Fourier
transform is band limited. When compared to short-time Fourier
transform, the advantage of time–frequency localization is that
wavelet analysis varies the time–frequency aspect ratio, produ-
cing good frequency localization at low frequencies (long time
windows), and good time localization at high frequencies (short
time windows). This produces a segmentation or tiling of the
time–frequency plane that is appropriate for most physical
signals, especially those of a transient nature. The wavelet



Fig. 1. Sub-band decomposition of DWT implementation; h[n] is the high-pass filter, g[n] the low-pass filter (taken from [12]).
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technique applied to the EEG signal will reveal features related to
the transient nature of the signal which are not obvious by the
Fourier transform [12].

The selection of a suitable wavelet and the number of
decomposition levels is very important in the analysis of signals
using the DWT. The number of decomposition levels is usually
chosen based on the dominant frequency components of the
signal. The levels are chosen such that those parts of the signal
that correlate well with the frequencies necessary for the
classification of the signal are retained in the wavelet coeffi-
cients. In the present study, since the EEG signals do not have
any useful frequency components above 30 Hz, the number of
decomposition levels was chosen to be 5. Thus, the EEG signals
were decomposed into details D1–D5 and one final approxima-
tion, A5, as in [12]. Fig. 1 shows the procedure of multi-
resolution decomposition of a given signal x[n].

In the experiments reported in Section 4, we have made use of
Daubechies of order 4 (db4) as wavelet basis, as its smoothing
feature made it suitable to detect changes of EEG signal [12]. In
order to reduce the dimensionality of the extracted feature
vectors, statistics over the set of the wavelet coefficients were
used to generate the input to the SVM and LS-SVM [9,16,19]:
�
 Average of wavelet coefficients in each sub-band (W_Avg).

�
 Standard deviation of wavelet coefficients in each sub-band

(W_Std).

�
 Maximum of wavelet coefficients in each sub-band (W_Max).
2.3. Standard SVM and LS-SVM classifiers

Let the EEG training set in hand be fðxi, yiÞg
N
i ¼ 1, with input

xiARm and yiA{71}. Either SVM or LS-SVM first accomplishes a
mapping f:Rm-Rn. Usually, n is much higher than m in such a
way that the input vector is mapped into a high-dimensional
space [24]. When data are linearly separable, the machine builds a
hyperplane wTfðxÞþb in Rn, by means of which the margin
between positive and negative samples is maximized. It can be
shown that w, for this optimal hyperplane, can be defined as a
linear combination of the set of nonlinear data transformations,
that is w¼

PN
i ¼ 1 aiyifðxiÞ [22].
In the standard SVM formulation [23], the generalized optimal
separating hyperplane w is determined by minimizing the
functional:

min
w,b,xi

Jðw, b, xiÞ ¼
1

2
ðwT wÞþC

XN

i ¼ 1

xi, ð1Þ

where C is a regularization hyperparameter and xi, i¼1,y,N, are slack
variables measuring the difference (error) between yi and the actual
SVM output. The optimization of (1) is subject to the constraints

yi½w
TfðxiÞþb�Z1�xi, i¼ 1,. . .,N: ð2Þ

From (1) and (2), the resulting quadratic programming (QP)
problem in the dual space may be written as [23]

max
a

JðaÞ ¼max
a

XN

i ¼ 1

ai�
1

2

XN

i ¼ 1

XN

j ¼ 1

aiajyiyjfðxiÞ
TfðxjÞ ð3Þ

subject to
PN

i ¼ 1 aiyi ¼ 0 and 0rairC, for i¼ 1,. . .,N. To obtain
fðxiÞ

TfðxjÞ in (3), we do not need to calculate either f(xi) or f(xj)
explicitly. Instead, for some f, we can design a kernel matrix K

such that Kðxi,xjÞ ¼fðxiÞ
TfðxjÞ [24].

Kernels are exploited for the purpose of (non)linearly mapping
input data into high-dimensional feature spaces in a computa-
tionally efficient manner. It is within this novel, hidden feature
space that the linear decision surface can be readily designed.
Different kernel functions give origin to different feature spaces
and thus also to different generalization capabilities of the
resulting classifier. So, one important issue to be considered in
the design of SVMs in general is how to choose the best kernel
function for dealing with the nuances of the given problem.

Among the several types of kernels one can experiment with
[24], the results shown in the next section were obtained with
either RBF (radial basis function) or ERBF (exponential RBF)
kernels, whose mathematical expressions are shown below:

KRBFðxi, xjÞ ¼ exp �
Jxi�xjJ

2

2s2

 !
, ð4Þ

KERBFðxi,xjÞ ¼ exp �
Jxi�xjJ

2s2

� �
, ð5Þ

where s denotes a radius parameter to be adjusted previously.
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By resorting to kernels, (3) can be rewritten as

max
a

JðaÞ ¼max
a

XN

i ¼ 1

ai�
1

2

XN

i ¼ 1

XN

j ¼ 1

aiajyiyjKðxi, xjÞ: ð6Þ

For the training samples along the decision boundary, the
corresponding ai’s are greater than zero, as ascertained by the
Kuhn–Tucker theorem [22]. These samples are known as support
vectors. The number of support vectors is generally much smaller
than N, being proportional to the generalization error of the

classifier [23]. A test vector xARm is then assigned to a given class

according to f ðxÞ ¼ sign½wTfðxÞþb� ¼ sign
PN

i ¼ 1 aiyiKðx,xiÞþb
� �

.

In [25,26], a least squares type of SVM was introduced by
modifying the problem formulation so as to obtain a system of
linear equations in the dual space. This is done by taking a least
squares cost function, with equality instead of inequality
constraints. Hence, the parameters w and b of the hyperplane
can be obtained by solving the following alternative formulation:

min
w,b,xi

Fðw, b, xiÞ ¼
1

2
ðwT wÞþ

C

2

XN

i ¼ 1

ðxiÞ
2

ð7Þ

subject to equality constraints yi½w
TfðxiÞþb� ¼ 1�xi, i¼ 1,. . .,N.

The Lagrangian defined in the LS-SVM dual space is written as
follows:

Lðw, b, xi; aiÞ ¼Fðw, b, xiÞ�
XN

i ¼ 1

aifyi½w
TfðxiÞþb��1þxig, ð8Þ

where aiAR, i¼1,y,N, are Lagrange multipliers, which can be
positive or negative due to the equality constraints, as follows
from the Karush–Kuhn–Tucker (KKT) conditions [25,26].

The conditions for optimality:

@L

@w
¼ 0-w¼

XN

i ¼ 1

aiyifðxiÞ,

@L

@b
¼ 0-

XN

i ¼ 1

aiyi ¼ 0,

@L

@xi
¼ 0-ai ¼ Cxi, 8i¼ 1,. . .,N,

@L

@ai
¼ 0-yi wTfðxiÞþb

� �
�1þxi ¼ 0, 8i¼ 1,. . .,N

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð9Þ

can be written as the linear system

0 yT

y OþC�1I

" #
b

a

" #
¼

0

1

� 	
ð10Þ

with y¼ ½y1,. . .,yN�
T , a¼ ½a1,. . .,aN�

T , 1¼ ½1,. . .,1�T and I refers to
the identity matrix. Mercer’s conditions for kernels are embedded
Table 1
Comparative analysis: for each triad /features vector, model type, kernel typeS, we sh

Feature vector Model type Kernel type

RBF

RBF error7std. dev.

EEG raw data SVM 0.00070.000

LS-SVM 0.00070.000

W_Avg SVM 0.10070.0197

LS-SVM 0.09570.0229

W_Std SVM 0.00070.0000

LS-SVM 0.00070.0000

W_Max SVM 0.00070.0000

LS-SVM 0.005070.005
within the matrix O, whose elements read simply as
Oij ¼ yiyjKðxi, xjÞ.
3. Computational experiments

In what follows, we provide details on how the sensitivity
analysis experiments have been conducted. Then, we present
comparative charts displaying, for each configuration of kernel
type, kernel parameter value, and derived feature, the perfor-
mance levels achieved by the two kernel machines in terms of
misclassification rate as well as sensitivity and specificity indices
[13]. Finally, we situate the performance levels achieved by
optimally configured LS-SVM in the relevant literature.

3.1. Configuration of the sensitivity analysis experiments

In the sensitivity analysis experiments accomplished, we have
assessed the performance of the standard and least squares SVM
models with regard to the variation of the radius parameter alone,
keeping the value of the regularization parameter C constant in
100. This value was achieved after some preliminary experiments
and agrees with the fact that SVM models with low values of C

tend in general to achieve better performance than those with
high values of this parameter. Although we know that there are
several rules-of-thumb to select the values of the radius
parameter [30], we have opted to set the values of s as
2i, i¼�10,�9,y,14,15. For each of the 26 values in this range,
a 10-fold cross-validation process was performed to better gauge
the average performance of the models.

3.2. Sensitivity analysis results

In Table 1, we provide the value(s) of the radius parameter that
has(ve) yielded the best average result, in terms of cross-
validation error, for each triad /feature vector, model type,
kernel typeS. In this table, the accuracy results are given in terms
of average and standard deviation. Besides the feature vectors
achieved through DWT, simulations have also been conducted
with the EEG series without pre-processing. On the other hand,
Figs. 2–9 depict the sensitivity profiles exhibited by the two types
of kernel machine for the feature vectors considered. The
sensitivity profiles relate to the following three criteria
[12,13,18]: misclassification rate (i.e., the ratio between the
number of misclassified EEG segments, either healthy or
unhealthy, and the total number of segments available in
the test partition), sensitivity, also called true positive rate
(i.e., the ratio between the number of correctly classified
healthy EEG segments and the total number of healthy EEG
ow the value of s that gives the best average accuracy result.

ERBF

s ERBF error7std. dev. s

16 0.00070.0000 4

16 0.00070.0000 4

0.5 0.10570.0273 0.5

0.5 0.10070.0289 0.5

1,2,4,8 0.00070.0000 1,2,4,8,16

0.5,1,2 0.00070.0000 1,2,4,8,16

0.5 0.00070.0000 1,2,4

0.25,1,2 0.00070.0000 0.5,1,2,4
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Fig. 2. Sensitivity profiles exhibited by SVM and LS-SVM models taking EEG raw

data as input and RBF as kernel function: (a) misclassification rate and

(b) sensitivity and specificity values.
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Fig. 3. Sensitivity profiles exhibited by SVM and LS-SVM models taking EEG raw

data as input and ERBF as kernel function: (a) misclassification rate and

(b) sensitivity and specificity values.
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segments available in the test partition), and specificity, also
called true negative rate (i.e., the ratio between the number of
correctly classified epileptic seizure EEG segments and the total
number of epileptic seizure EEG segments available in the test
partition). The bars in these graphs represent the variance of each
measure (one standard deviation from the mean) for each value of
s considered.
3.3. Discussion

Considering the results presented in Table 1, and Figs. 2–9, one
can observe that, in most of the cases, the average performance
indices (i.e., misclassification rate as well as sensitivity and
specificity values) showed by the best models produced for each
type of kernel machine were quite similar, reaching a remarkable
level. From these results, it is possible to conclude that different
combinations of the radius parameter value and the kernel
function may yield best error rates exhibited by both machines.
This means that the task of fine-tuning the SVM and LS-SVM
models is instrumental for one to achieve optimal performance,
even though this task does not seem to be so hard in nature in the
present context of EEG signal classification. Also interesting is the
fact that the best models of both types of machine could do very
well with the healthy/unhealthy discrimination even when taking
as input the original, raw time series.

Regarding the performance profiles depicted in Figs. 2–9, it
is possible to assert that, in general, the two types of machines
display the same patterns of sensitivity to the choice of the
kernel parameter value—for all three measures, there are some
regions of stability separated by zones of abrupt variation. It is
worth noting that the zones of stability usually correlate with
larger absolute values of s; this is because the kernel functions
are of a symmetric nature and their outcomes tend to 1 when
the absolute value of the radius parameter increases. That is, in
these cases, the output of the machines will always be the same
(always one of the two classes), irrespective of the given input
data.

Except given to the feature vector produced via the average of
the wavelet coefficients, when comparing the performance
profiles, one can observe that the sensitivity behavior is quite
similar in general. This indicates that the selection of parameters
to the kernel appears to be more important than the technique
used for feature extraction. Anyway, the standard deviation of the
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function: (a) misclassification rate and (b) sensitivity and specificity values.
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wavelet coefficients in each sub-band seems to be the best type of
feature in the contest (see Figs. 6 and 7).

Considering the features extracted by taking the standard
deviation and the maximum of the wavelet coefficients in
particular, there is a noticeable range of values for the kernel
parameter that yields better performance. For example, for the
ERBF kernel with feature vector extracted through standard
deviation, regardless of the type of machine considered, a good
value of the radius parameter usually lies in the range [1,16]. On
the other hand, for the RBF kernel, this range turns out to be more
restricted—namely [1, 4], for the SVM, and [0.5, 2], for the LS-SVM.
3.4. Contrast with related work

As mentioned before, several prominent works have already
made use of the EEG dataset adopted in this paper (originally
published in [6,7]) in order to assess the pros and cons of different
machine learning approaches to cope with the epilepsy diagnosis
problem. A great parcel of these works has reported their results
in terms of overall classification accuracy and sensitivity/specifi-
city values; a few have also reported confusion matrices as well as
receiver operating characteristic (ROC) curves. Each column of a
confusion matrix represents the instances in a predicted class,
while each row represents the instances in the actual class. One
benefit of a confusion matrix is that it allows one to see if a
classifier is confusing two classes (i.e., commonly mislabeling one
as another). So, one could tell the frequency at which the classifier
is misclassifying healthy EEG segments as unhealthy, and vice
versa. On the other hand, ROC curves provide a way to visually
inspect the whole spectrum of sensitivity-specificity values a
binary classifier produces for a given test dataset. It is a plot of the
sensitivity vs. (1�specificity) for different discrimination thresh-
olds: The best classifier for a problem is the one for which the area
under the ROC curve (AUC) equals to one. In what follows, we
provide a brief comment on the accuracy results achieved by a
sample of related works which have employed neural networks or
kernel machines as part of their diagnosis system.

Nigam and Graupe [4] employed a multistage nonlinear filter
in combination with a LAMSTAR neural network to cope with the
automatic detection of epileptic seizures. As in the present work,
the authors made use of only two sets of the EEG dataset, namely
sets A and E, to assess their methodology. The overall success
percentage achieved by the system, considering both the false
positive and false negative rates, was of 97.2%. On the other hand,
in the work of Subasi [12], who made use of mixture-of-experts
(ME) models to cope with the same dichotomization problem, the
author reports 94.5% as total accuracy rate, which was better than
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Fig. 6. Sensitivity profiles exhibited by SVM and LS-SVM models taking the
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kernel function: (a) misclassification rate and (b) sensitivity and specificity values.
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kernel function: (a) misclassification rate and (b) sensitivity and specificity values.
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the score achieved by single multilayer perceptron (MLP) neural
networks (93.2%). The specificity and sensitivity values reported
for the ME and MLP models were, respectively, 94%/92.6% and
95%/93.6%. ME models induced with wavelet coefficients have
also been considered by Übeyli [13], even though, in that work,
the performance of the models was measured over three sets of
the EEG dataset (namely, sets A, D, and E). The total classification
accuracy obtained by the ME network structures reported in [13]
was 93.17% and ROC curves for single MLP and ME classifiers were
also provided.

The paper of Tzallas et al. [14] presents a methodology of
analysis of EEG signals that is based on time–frequency analysis.
Initially, selected segments of the EEG signals are analyzed using
time–frequency methods and several features are extracted for
each segment, representing the energy distribution in the
time–frequency plane. Then, those features are used as input
to a feedforward neural network, which provides the final
classification. In order to evaluate the methodology, the authors
have generated four different classification problems, and the
results achieved in terms of overall accuracy varied from 97.72%
to 100%. By other means, Kocyigit et al. [15] have designed an MLP
classifier based on the Fast independent component analysis (ICA)
feature extraction technique in order to discriminate between
normal and epileptic patients. The resulting system achieved a
sensitivity rate of 98% and specificity rate of 90.5%.

Other types of neural network models than feedforward
networks have also been investigated to tackle the epileptic/
non-epileptic EEG signal discrimination. For instance, the works
of Güler and Übeyli [16] and of Kannathal et al. [17] have both
considered the application of a well-known class of neurofuzzy
models, namely, the adaptive neurofuzzy inference system
(ANFIS); the main difference between them lies in the type of
feature extracted, either via wavelet transform or entropy
measures, respectively. While, the classification accuracy reported
by the second work was typically above 90% for different entropy
measures, that achieved by the former was of 98.68% (with
Daubechies of order 2 adopted as wavelet basis). On the other
hand, Güler et al. [18] have investigated the diagnostic accuracy of
recurrent neural networks (RNN) employing Lyapunov exponents
trained with the Levenberg–Marquardt algorithm. The results
were obtained for sets A, D, and E of the EEG dataset, and the
values of specificity, sensitivity, and total classification accuracy
of the produced RNN models were 97.38%, 96.88%/96.13%, and
96.79%, respectively. Finally, it is worth commenting about the
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Table 2
Confusion matrices produced by LS-SVM taking EEG raw data as input and RBF (a)

and ERBF (b) as kernel function.

Predicted class

(a) (b)

Real class 800 0 800 0

11 789 2 798
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results recently achieved by Übeyli with combined models of
neural networks [19] and by Übeyli and Güler with multiclass
SVM as EEG signal classifiers [20,21]. In [19], a two-level network
architecture is employed: the first-level networks were imple-
mented for the EEG signals classification using the statistical
features as inputs, while the second-level networks were trained
using the outputs of the first-level networks as input data. Three
types of EEG signals were classified by the system, which achieved
96%, 94.5%/94%, and 94.83% as specificity, sensitivity, and total
accuracy rate, respectively. Conversely, in [21], Übeyli investi-
gated the behavior of multiclass SVM configured with error
correcting output codes (ECOC) for classification of the signals
available in all five sets of the EEG dataset (sets A–E). The features
were extracted by means of eigenvector methods. The total
classification accuracy obtained by the resulting SVM was very
high, namely, 99.30%, and specificity/sensitivity values as well as
the ROC curve are also provided in the paper.

As a means to contrast the performance of LS-SVM models
with the results reported in the aforementioned papers, we have
followed the same experimental methodology adopted by Übeyli
[21] (considering, however, two instead of five classes) and
performed additional experiments involving a different manip-
ulation of the EEG dataset. In this new format, the 100 time series
available for each class were windowed by a rectangular window
composed of 256 discrete data and then the training and test sets
were derived. In total, 3200 samples (1600 for each class) were
produced, of which 1600 samples were randomly selected to
compose the training partition (800 for each class) and the
remaining 1600 vectors (800 for each class) were used for test.
Then, for each combination of kernel type, kernel parameter
value, and derived feature, we have optimally calibrated the
LS-SVM models by following the sensitivity analysis process
described previously. As result, we have produced the confusion
matrices and ROC curves described in Tables 2–5 and Fig. 10,
respectively. By taking into account these results, one can notice



Table 4
Confusion matrices produced by LS-SVM taking the standard deviation of wavelet

coefficients in each sub-band as input and RBF (a) and ERBF (b) as kernel function.

Predicted class

(a) (b)

Real class 800 0 800 0

0 800 0 800

Table 5
Confusion matrices produced by LS-SVM taking the maximum of wavelet

coefficients in each sub-band as input and RBF (a) and ERBF (b) as kernel function.

Predicted class

(a) (b)

Real class 797 3 797 3
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Table 3
Confusion matrices produced by LS-SVM taking the average of wavelet coefficients

in each sub-band as input and RBF (a) and ERBF (b) as kernel function.

Predicted class

(a) (b)

Real class 760 40 764 36

96 704 71 729
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that it is possible to achieve the remarkable score of 100% for all
criteria (sensitivity, specificity, and total classification accuracy)
by making use of the LS-SVM model configured with either RBF or
ERBF kernels and taking the standard deviation of wavelet
coefficients in each sub-band as derived feature.
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

1 - Specificity

Fig. 10. ROC curves produced by LS-SVM taking EEG raw data, W_Avg, W_Std, and

W_Max as input, and RBF (a) and ERBF (b) as kernel function. One should notice

that some of the curves overlap in the two plots.
4. Summary

In this paper, least squares SVM classifiers were designed to
deal with the epilepsy diagnosis task through EEG signal
classification. In particular, a sensitivity analysis contrasting the
performance profiles exhibited by LS-SVM and standard SVM with
respect to the choice of the kernel function and its parameter
value was performed. In this analysis, different types of features
extracted from the raw EEG signal were considered. Such study is
interesting as it can provide hints on how these kernel machines
are affected by the hyper-parameter tuning process [29] as well
the derived features from complex signals such as EEG. In such
regard, the results presented here suggest that the dependence
profiles exhibited by the two machines tend to be qualitatively
similar, and their performance is not too much influenced by the
choice of the derived EEG feature vector. In addition, we have
contrasted the performance achieved by optimally configured
LS-SVM with the accuracy rates reported by the models
investigated in recent related work, showing that, by means of
the sensitivity analysis process, it is possible to produce an
LS-SVM that can achieve the remarkable score of 100% as total
accuracy rate for the EEG dataset considered.

As ongoing work, we are currently extending the scope of
investigation in SVM and LS-SVM sensitivity analysis by con-
sidering other types of biomedical signal processing problems,
like those involving ECG [28] and Doppler ultrasound signals
[32–34]. Moreover, we plan to investigate how the combination of
models coming from different types of kernel machines [35,36]
can improve the levels of performance, in terms of accuracy and
generalization, from that achieved by each machine type alone. In
this regard, Übeyli [19] has recently shown the potentials of
combining models while tackling the multiclass version of the
EEG signal classification problem, even though the classifiers
considered in that work were restricted to be feedforward neural
networks.
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