
On the Power Spectral Density of Chaotic Signals
Generated by Skew Tent Maps

Daniela Mitie Kato and Marcio Eisencraft
Escola de Engenharia

Universidade Presbiteriana Mackenzie
Sao Paulo, Brazil

Email: danikato @yahoo.com; marcioft@mackenzie.br

Abstract- This paper investigates the characteristics of the putational simulation the PSD of discrete-time chaotic orbits
Power Spectral Density (PSD) of chaotic orbits generated by generated by a family of piecewise linear maps, the skew tent
skew tent maps. The influence of the Lyapunov exponent on one. Furthermore, we relate a property of the chaotic attractor
the autocorrelation sequence and on the PSD is evaluated
via computational simulations. We conclude that the essential of these orbits the Lyapunov exponent [1] with a convenient
bandwidth of these chaotic signals is strongly related to this measure of the bandwidth of a signal, the essential bandwidth
exponent and they can be low-pass or high-pass depending on [5].
the parameter of the family. These results withstand the usual The paper is organized as follows. Section II presents the
thought that chaotic signals are always broadband and provide skew tent family and its relevant characteristics. The tech-
a simple way of generating chaotic sequences with arbitrary niques for obtaining the PSD of chaotic signals are presented
bandwidth.

in Section III. In Section IV the relationship between Lya-
I. INTRODUCTION punov exponent and essential bandwidth is explored. Finally,

A chaotic signal is defined as being deterministic, aperiodic we summarize and discuss the key results in Section V.
and presenting sensitivity to initial conditions. This last prop- II. SKEW TENT MAPS
erty means that, if the generator system is initialized with a

inta codtin th obaie sina diverges A one-dimensional discrete-time dynamical system or mapslightly different is defined by the difference equationvery quickly from the original one [1].
From the Telecommunication Engineering point of view, s(n + 1) f (s(n)), (1)

chaotic signals possess some interesting properties. The liter- where f (.) is a function with the same domain and range
ature, e.g. [2], [3], uses to consider that they have broadband, space U c IR, n IN and s(0) e U. For each initial condition
impulsive Autocorrelation Sequence (ACS) and the cross- . '
correlation sequence between orbits with different initial con- so nobto inlbcmsdfnda (,S) f(o
ditionsasseume lo w eseot wthe chrereitiacs nc with fn (.) being the n-th successive application of f(.). Forditions assumes low values. Due to these characteristics, since sipict of noain.nobtwl esmoie ysn
the beginning of the 1990's, the field of communication with simpicit so otatian.. ' ~~~~~~whenever so iSmmaterial.chaotic carriers has received a great deal of attention, see
e.g. [2], [4] and references therein. Using chaotic signals
to modulate narrowband information signals results in larger s (n + 1) = fI (s (n)) (2)
bandwidth and lower Power Spectral Density (PSD) level, where
witch characterize spread spectrum systems [5]. This way, 2 1-_ <

chaotic modulations possess the same qualities than conven- + 1, 1< s <(a
tional spread spectrum [2], mitigating both multipath and fi(s)

2 (3)t~2 a_o+,o < S <jamming effects. -1 a-1 a.
The study of spectral characteristics is an important issue and {a,s(0)} c U = (-1, 1). This family is a modified

when it comes to using chaotic signals in practical commu- version of the one proposed in [11]. The parameter a deter-
nications. A great deal of the existing technology is based mines the x-coordinate of the tent's peak. This map is shown
in frequency multiplexing and, besides, the bandwidth of the in Figure 1(a) along with the orbit s(n, 0.2) for a = 0.6 in
transmitted signal is an essential parameter when planning a Figure 1(b).
communication system. Some works as [6]-[10] depict the The Lyapunov exponent h is the divergence rate between
PSD of continuous-time chaotic signals generated by particular nearby orbits and is usually taken as a measure of the
systems. However, the spectral characteristics of these signals "chaoticness" of an aperiodic signal. For the orbit s(in, so),
have been rarely studied deeply. Most papers just state that it is given by [1]
they are broadband signals. 1/-

The objective of this paper is to present some preliminary h = rii n ft'(s (n, so)) l1). (4)
results on this far-reaching subject. We investigate via com- N-° \Nn=Oj/
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Fig. 1. (a) Skew tent map fr(s); (b) the orbit s(n, 0.2) for a 0.6 and
(c) Lyapunov exponent of the chaotic orbits as a function of a. -1 100 150 200 250.5 1
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A positive h is a sufficient condition for an aperiodic signal to (e) 0 0.5
inE .

be classified as chaotic. It can be shown [I I] that the Lyapunov 0
exponent of almost every orbit of a skew tent map is a function - 5 00
of a only and is given by

1 1

iz.a+ 12 1 - 2a (f)
2 ao+1 2 1 -o 1" I ,1

Figure l(c) shows how h, varies with a. For every considered 0 50 100 150 200 250 0 0.5 1
n f

value of a, h, > 0 and the maximum value of hl, himax =

In 2, is attained for a = 0. Fig. 2. PSD of individual orbits s (n, so): (a) so 0.2, a 0.9; (b)
The chaotic orbits generated by Eq. (2) have uniform so = 0.7, a 0.9; (c) so = 0.2, a 0.1; (d) so 0.7, a 0.1; (e)

invariant density over (-1,1) [12]. Consequently, they are all 0o 0.2, a -0.9; (f) so 0.7, a 0.-9
zero-mean and their average power is 1/3 independently of a.

In the next two sections we characterize the ACS and the The PSD S(f, so) is the Discrete-Time Fourier Transform
PSD of the signals generated by these maps. (DTFT) of R(l, so), considering I as the time variable [13]:

III. PSD OF CHAOTIC SIGNALS
S (f, SO) = R (1, so) e-7f (7)

There are two different ways of interpreting the chaotic
f =-=s

signals generated by a given map. They can be seen as Figure 2 shows six different orbits and their estimated PSD
deterministic individual signals or as sample-functions of a using N = 20000 samples. For the PSD plots, the horizontalstochastic process. Each of these interpretation gives rise to scale is the normalized frequency f. This way, f 1 is
different forms of calculating the PSD. Both will be analyzed equivalent to the discrete-time frequency w rad/samples
in this section.

and to the continuous-time frequency fc = f * f/2, where f,

A. Chaotic signals as deterministic individual signals is the sampling frequency. The PSD curves were normalized
Given the map f(.) in Eq. (1) and the initial condition so that their maximum value is 1.

s(0) = so, the sequence s (n, so) is well defined for all n > 0 Based on these computational simulations we can state that:
and its ACS can be readily determined as i) when the parameter a is positive, the generated signals

varies slowly in time and they are low-pass signals, as

1 N-i can be seeing in Figure 2(a) and (b);
R(l,so) = r-iNE s(n, 30)3(1 + 1,30), (6) ii) when la is next to zero, the generated signals are

n=O ~~~~~~~~broadband, as in Figure 2(c) and (d);
where 1 is an integer [13]. In this calculation, we consider iii) for negative values of ag, the orbits oscillate quickly in
s (12 + 1, 3o) =0 whenever n2+1I results in a negative number. time and they are high-pass signals, as in Figure 2(e)
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I Fig. 4. (a) PSD and (b) ACS of orbits of skew tent maps as a function of
oz. The darker the point, the higher the associated value.

Fig. 3. (a) PSD and (b) ACS of the ensemble of orbits defined by different
values of the parameter a. The ACS is normalized so that Rs (0) = 1.

i) the higher the absolute value of a, the narrower the

and (f); bandwidth of the generated chaotic signals;
iv) orbits generated by the same map with different initial ii) the signal of a defines if the obtained signals are low-

conditions present similar PSD despite the fact that they pass or high-pass;
are pointwise different in time. This can be concluded iii) the PSDs of the signals generated by a and -a present
from the comparison of Figure 2(a) and (b), (c) and (d) symmetry around f 0.5, as can be seen in Figure 3(a);
or (e) and (f). iv) for a > 0, R(l) is monotonically decreasing with 1l.

For a < 0, R(l) oscillates indicating that in this case
This way, the map, defined by a, is determinant in the for almost any n and so, the signals of s (n, so) and

spectral characteristics of the signals it generates. The spectral s (n + 1, so) are different;
similarities between orbits generated by the same map moti- v) it is worth to note that for a = 0, the map fI (.) coincides
vates the interpretation of a chaotic signal as a realization of with the one used in [15] for 3 = 2. In this situation,
a stochastic process. that paper has demonstrated that the generated signals

have white spectrum. Our results agree perfectly with
B. Chaotic signals as sample functions of a stochastic process theirs;

Chaotic signals generated by a fixed map can be understood vi) changing a, it is possible to obtain low-pass or high-pass
as a stochastic process in which each initial condition defines chaotic signals with arbitrary bandwidth.
a sample function [12]. This interpretation has the advantage These results mean that chaos is far way from being a syn-
of highlighting properties that apply to the entire set of chaotic onym for broadband non-correlated signals. This way, when it
orbits defined by the map. comes to employ chaotic signals in communication systems,

In this case, the map defines an ergodic process [12] and it is relevant to investigate their spectral characteristics.
we can define the ACS as

IV. ESSENTIAL BANDWIDTH AND THE LYAPUNOV

Rs(l) = E [R (1, so)], (8) EXPONENT

The bandlimiting properties of signals can be measured by
where the expectation is taken over all initial conditions that the essential bandwidth defined as the frequency range where
generate chaotic orbits. The PSD Ss(f) is the DTFT of 95% of the total signal power is concentrated [5]. We use here
Rs(1), in the same way it is done with conventional stochastic a normalized version of this definition, 0 < B < 1, dividing
processes [14]. the essential bandwidth by 0.95. Using this definition, a white

Figure 3 shows estimates of the PSD and of the normalized noise has B = 1.
ACS for different values of a. For each curve, the expectation From the curves in Figure 3(a), we see that the value of
in (8) was estimated considering 20000 orbits with N - 440 B is determined by the absolute value of ov. This control
samples and initial conditions s0 uniformly distributed in U. is justified by the direct relationship between this parameter
The evolution of the PSD and ACS for increasing values of ag and the Lyapunov exponent shown in Figure 1(c). The lower
are plotted in Figure 4. the absolute value of ag, the higher the value of h1, which

These figures suggest that: means that the orbits diverge faster from nearby ones and the



(a) 1 The strong relationship between Lyapunov exponent and

0.8 : bandwidth can be useful in chaotic estimation and modulation
0.6 problems, as discussed in Section IV. Following this path,

co \there are many possibilities to explore in future researches.
0.4

The generalization of our results to other one-dimensional
0.2 maps seems to be possible using the conjugacy concept [1].
0 Numerical simulations show that conjugated maps generate
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 orbits with similar spectral characteristics. This subject is

(b) under research.

0.8 t ACKNOWLEDGMENT

0.6 The authors would like to thank Prof. Maria D. Miranda
and Prof. Jose R. C. Piqueira for the stimulating discussions

0.4-
0.2 on the subject of this paper.
0 REFERENCES
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

h, [1] K. T. Alligood, T. D. Sauer and J. A. Yorke. Chaos - an introduction to
dynamical systems, New York: Springer, 1996.

Fig. 5. Essential bandwidth B as a function of (a) oa and of (b) the Lyapunov [2] F. C. M. Lau and C. K. Tse. Chaos-based digital communication systems,
exponent h1. Berlim: Springer, 2003.

[3] M. Ciftci and D.B. Williams. "A novel channel equalizer for chaotic
digital communications systems," in: Proc. ICASSP '99, vol.3, pp.1301-
1304, Phoenix, USA, 1999.

ACS tends to an impulsive format. Consequently, the PSD, [4] M. P. Kennedy, R. Rovatti and G. Setti. Chaotic electronics in telecom-
being the DTFT of the ACS, will have a larger B. Figure 5 munications, Boca Raton: CRC Press, 2000.[5] B. P. Lathi. Modern digital and analog communication systems, 3rd
presents curves of B as function of a and of h1. One can see edition, New York: Oxford University Press, 1998.
that we go from a white spectrum at a = 0 to an extremely [6] T. Matsumoto and L. 0. Chua. "Hyperchaos: laboratory experiment and
narrowband signal at a next to the unity. numerical confirmation," IEEE Transactions on Circuits and Systems - I,

vol. 33, n. 11, pp. 1143-1147, 1986.
The existence of a one-to-one relationship between B and [7] T. Matsumoto, L. 0. Chua and M. Komuro. "The double scroll," IEEE

|ao is significative. Choosing a convenient oa, it is possible to Transactions on Circuits and Systems - I, vol. 32, n. 8, pp. 798-817,
generate a low-pass or high-pass chaotic signal with arbitrary 1985.

[8] K. M. Short. "Steps toward unmasking secure communications," Inter-
essential bandwith. Besides, it is possible to use the PSD of national Journal of Bifurcation and Chaos, vol. 4, n. 4, pp. 959-977,
an observed orbit to estimate a. 1994.

This relationship can also be used to implement new ideas [9] T. El Assad and C. Tarhini. "Design and implementation of a chaotic
codec," in: Proc. European Conference on Wireless Technology, pp. 351-

for receivers in chaotic digital modulation systems. An alter- 354, Paris, France, 2005.
native would be to associate different symbols with different [10] R. R. C. Reddy, T. Srinivas and A. Nadarajan. "Comparative study
values of oa| and to transmit N points of an orbit generated by between multi level modulations in chaotic optical communications,"in: Proc. IFIP Int. Wireless and Optical Communication Networks,
the corresponding map. In the receiver the essential bandwidth Bangalore, India, 2006.
of the received signal would be estimated and loa together with [11] A. Kisel, H. Dedieu and T. Schimming. "Maximum likelihood ap-
the associated symbol would be determined. proaches for noncoherent communications with chaotic carriers," IEEE

Trans. Circuits and Systems I, Fundamental Theory and Appl., vol. 48,
The performance of the above possibilities are subjects of no. 5, pp. 533-542, 2001.

further research. [12] A. Lasota and M. Mackey. Probabilistic properties of deterministic
systems, Cambridge: Cambridge University, 1985.

V. CONCLUSIONS [13] S. K. Mitra. Digital signal processing: a computer-based approach, 3rd.
edition, New York: McGraw-Hill, 2006.

This paper analyzes through computational simulations the [14] S. S. Haykin. Communication systems, 4th edition, New York: Wiley,
PSD of the orbits generated by the skew tent maps (2). We 2000.
have shown the influence of the parameter av and of the [15] H. C. Papadopoulos and G. W. Wornell. "Maximum-likelihood estima-

tion of a class of chaotic signals," IEEE Trans. Information Theory, vol.
Lyapunov exponent on the ACS and PSD of the obtained 41, no. 1, 1995.
chaotic signals.
An important preliminar consequence of our results is that

there are situations when the chaotic signals generated by
one-dimensional maps are not broadband. Furthermore, the
ACS of these signals is not necessarily impulsive. Citing the
opposite as advantages of using chaotic signals need more
careful analysis. It is possible to generate low-pass or high-
pass chaotic signals with arbitrary B very easily.


