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Chaotic Synchronization in
Discrete-Time Systems Connected by Bandlimited Channels

M. Eisencraft, R. D. Fanganiello, and L. H. A. Monteiro

Abstract—Due to the broadband characteristic of chaotic
signals, many of the methods that have been proposed for
synchronizing chaotic systems do not usually present a satisfac-
tory performance when applied to bandlimited communication
channels. Here, the effects of bandwidth limitations imposed by
the channel on the synchronous solution of a discrete-time chaotic
master-slave network are investigated. The discrete-time system
considered in this study is the Hénon map. It is analytically
shown that synchronism can be achieved in such a network by
introducing a digital filter in the feedback loop responsible for
generating the chaotic signal that will be sent to the slave node.
Numerical simulations relating the filter parameters, such as its
order and cut-off frequency, to the maximum Lyapunov exponent
of the master node, which determines if the transmitted signal
is chaotic or not, are also presented. These results can be useful
for practical communication schemes based on chaos.

Index Terms—Bandlimited channel, chaos, Hénon map,
master-slave network, synchronization.

I. INTRODUCTION

IN telecommunications, synchronism of periodic oscillators
composing the network can be fundamental for correctly

accomplishing information processing tasks (e.g. [1]). Two
well-known strategies developed for synchronizing regular
clocks are SDH (Synchronous Digital Hierarchy) and SONET
(Synchronous Optical Network) (e.g. [2]), which motivated
many theoretical studies (e.g. [3], [4]). In these architectures,
synchronism means that all nodes constituting the network
oscillate in the same frequency.

In the last two decades, the feasibility of communication
systems based on the synchronism of chaotic systems has
been theoretically and experimentally investigated (e.g. [5],
[6]). Chaotic synchronization means coincidence of the states
of the connected systems. A chaotic system deterministically
generates trajectories in the state space that are aperiodic,
limited and extremely sensitive to the initial condition (e.g.
[7]). This sensitivity is evaluated by the Lyapunov exponent.
The existence of a positive exponent implies chaos (e.g. [7]).
Chaotic signal is conjectured to be used in communication
schemes because of its inherent wideband characteristic; a
feature necessary, for example, for communication employing
spread spectrum techniques (e.g. [8]).

There are several schemes for accomplishing chaotic syn-
chronization (e.g. [9], [10]). For instance, in chaotic masking
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(e.g. [11]), the message to be sent to the slave is simply
added to a particular state variable of the master before being
transmitted. This state variable concerning the master is a
chaotic signal much stronger than the original message. In
chaotic modulation (e.g. [12]), the message is combined to
a particular state variable of the master by applying a coding
function, in order to modify the master dynamics. This chaotic
signal is then transmitted and the message is recovered in the
slave by using a decoding function.

Chaotic signal is usually wideband (e.g. [8], [13], [14]),
which becomes a problem for synchronization when the com-
munication channel imposes bandwidth limitations [15]. Due
to the nonlinear nature of the network nodes, the spectrum of
the signal originally generated by the master can be strongly
altered and the message can not be faithfully recoverable in the
slave if any spectral component is damaged in the transmis-
sion. In fact, even minute gain or phase changes are enough to
hamper synchronization. A possible solution to this problem,
independently proposed in [16] and [17], demands the use
of identical filters in the master and in the slave, in order to
confine the spectral content of the transmitted signal to the
available bandwidth. Both these works deal with continuous-
time systems. A study regarding discrete-time chaotic systems
was already numerically performed in [18]. This study was
motivated by the ease of employing digital signal processors
or microcontrollers for a real implementation. However, in
continuous or discrete-time, the requirements on the filter
coefficients for preserving the chaotic nature of the transmitted
signal and maintain synchronization were not yet determined.

Here, the conditions for synchronizing discrete-time chaotic
systems connected by bandlimited channels are analytically
derived. The discrete-time system considered in this analysis
is the well-known Hénon map (e.g. [5], [19]). This paper is
organized as follows. In Section 2, the synchronization method
is analytically investigated. In Section 3, the relation among
the filter parameters and the maximum Lyapunov exponent of
the master is numerically explored. In Section 4, the main
conclusions and the possible implications for chaos-based
communication schemes are stressed.

II. DISCRETE-TIME CHAOS SYNCHRONIZATION IN

BANDLIMITED CHANNELS

Consider two discrete-time systems defined by

x(𝑛+ 1) = 𝐴x(𝑛) + b+ f(x(𝑛)) (1)

y(𝑛+ 1) = 𝐴y(𝑛) + b+ f(x(𝑛)), (2)

where 𝑛 ∈ ℕ, x(𝑛) = [𝑥1(𝑛), 𝑥2(𝑛), . . . , 𝑥𝑘(𝑛)]
𝑇 , y(𝑛) =

[𝑦1(𝑛), 𝑦2(𝑛), . . . , 𝑦𝑘(𝑛)]
𝑇 . The square matrix 𝐴𝑘×𝑘 and the

column vector b𝑘×1 are constants. The function f : ℝ𝑘 �→ ℝ
𝑘

is nonlinear. The system described by Eq. (1) is autonomous
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Fig. 1. Discrete-time communication system for bandlimited channels.

and hence is called master; the system described by Eq. (2)
depends on x(𝑛) and is called slave. The synchronization error
e(𝑛) ≡ y(𝑛)− x(𝑛) is given by

e(𝑛+ 1) = 𝐴e(𝑛). (3)

Both systems are completely synchronized if e(𝑛) → 0 as
𝑛 grows. This occurs if the eigenvalues 𝜆𝑖 of 𝐴 satisfy (e.g.
[20])

∣𝜆𝑖∣ < 1, 1 ≤ 𝑖 ≤ 𝑘. (4)

Therefore, for a node described by Eq. (1) and obeying the
condition (4), it is easy to set up a slave able of synchronizing
with it [12].

A chaotic modulation scheme based on the method above
was proposed in [18]. It considers that f depends solely on the
component 𝑥1 of x; thus f(x(𝑛)) = [𝑓 (𝑥1(𝑛)) , 0, . . . , 0]

𝑇 .
The communication channel is represented by a linear sys-
tem with frequency response 𝐻𝑐(𝜔). In such a scheme, the
transmitted signal 𝑠 is generated by coding the message
𝑚(𝑛) by using 𝑥1(𝑛) via coding function 𝑐; that is 𝑠(𝑛) =
𝑐 (𝑥1(𝑛),𝑚(𝑛)) . Let 𝑟(𝑛) ≡ 𝑠(𝑛) ∗ ℎ𝑐(𝑛) be the signal
that the channel delivers to the slave, where ℎ𝑐(𝑛) is the
impulse response of the channel and “∗” represents linear
convolution. The message 𝑚′(𝑛) decoded in the slave by
using the inverse decoding function 𝑑 = 𝑐−1 is obtained by
𝑚′(𝑛) = 𝑑 (𝑦1(𝑛), 𝑟(𝑛)), where 𝑦1 is the first component of
y. Of course, the goal is 𝑚′(𝑛) = 𝑚(𝑛).

In this synchronization scheme, the two nodes are ruled by

x(𝑛+ 1) = 𝐴x(𝑛) + b+ f(𝑠(𝑛)) (5)

y(𝑛+ 1) = 𝐴y(𝑛) + b+ f(𝑟(𝑛)). (6)

Notice that the differences between Eqs. (1,2) and Eqs. (5,6)
are only in the arguments of f .

For an ideal channel, i.e., 𝐻𝑐(𝜔) = 1 and 𝑠(𝑛) = 𝑟(𝑛), the
error dynamics is still governed by Eq. (3). If the condition
(4) holds, then y(𝑛) → x(𝑛) and, in particular, 𝑦1(𝑛) →
𝑥1(𝑛). Hence 𝑚′(𝑛) → 𝑑 (𝑥1(𝑛), 𝑐 (𝑥1(𝑛),𝑚(𝑛))) = 𝑚(𝑛).
Therefore, when the parameter values of the master and the
slave are perfectly matched over an ideal channel, the message
is faithfully recovered at the slave without degradation (except
during a synchronization transient).

For a non-ideal channel, i.e., 𝐻𝑐(𝜔) ∕= 1, synchronism is
impaired [18]; consequently, 𝑚′(𝑛) ↛ 𝑚(𝑛). Because of the
nonlinear nature of the nodes, if any spectral component is
amiss, all spectral components at the receiver can be affected.

A way of circumventing these difficulties for ideal but ban-
dlimited channels is to adjust the spectrum of the transmitted
chaotic signal to the channel band. A block diagram of the
proposed system is shown in Fig. 1. Consider 𝐻𝑠(𝜔) as an
𝑁 -th order finite impulse response filter placed in the path of
𝑥1. Then, for the input 𝑥1(𝑛), its output 𝑥𝑘+1(𝑛) is expressed
as 𝑥𝑘+1(𝑛) =

∑𝑁+1
𝑗=1 𝑐𝑗𝑥1(𝑛−𝑗+1) where 𝑐1, 𝑐2, ..., 𝑐𝑁+1 are

the filter coefficients. Here, the transmitted signal 𝑠 is obtained
by 𝑠(𝑛) = 𝑐(𝑥𝑘+1(𝑛),𝑚(𝑛)). This same filter is placed in
the path of 𝑦1. Therefore, this filter output is 𝑦𝑘+1(𝑛) =∑𝑁+1

𝑗=1 𝑐𝑗𝑦1(𝑛− 𝑗 +1) and 𝑚′(𝑛) = 𝑑(𝑦𝑘+1(𝑛), 𝑟(𝑛)). Thus,
the dimension of the system of difference equations describing
master and slave are now of order 2(𝑘 + 𝑁) instead of 2𝑘.
Provided that the spectrum of 𝑠(𝑛) is inside the filter passband
and the master obeys the condition (4), then the message can
be fully recovered.

As an example, take as chaos generator the two-dimensional
Hénon map (e.g. [5], [19])

𝑥1(𝑛+ 1) = 1− 𝛼𝑥2
1(𝑛) + 𝑥2(𝑛) (7)

𝑥2(𝑛+ 1) = 𝛽𝑥1(𝑛). (8)

where 𝛼 and 𝛽 are constants. In this case, the master can be
written in the form of Eq. (5) with 𝐴(𝑁+2)×(𝑁+2) as

𝐴 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 . . . 0 0
𝛽 0 0 0 . . . 0 0
𝑐2 𝑐1 0 𝑐3 . . . 𝑐𝑁 𝑐𝑁+1

1 0 0 0 . . . 0 0
0 0 0 1 . . . 0 0

...
. . .

... 0
0 0 0 0 . . . 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (9)

The eigenvalues of this matrix are 𝜆1 = −𝜆2 =
√
𝛽 and 𝜆3 =

. . . = 𝜆𝑁+2 = 0. So chaotic synchronization is guaranteed
for 𝛽 < 1 independently of the filter coefficients and of 𝑚(𝑛).
This is a relevant result: synchronization is not a concern when
projecting 𝐻𝑠(𝜔). However, as pointed out by [18], a question
that must be addressed is whether the generated signals remain
chaotic after the introduction of the filter. In the next section,
this problem is numerically investigated.

III. FILTER CHARACTERISTICS AND CHAOS

In principle, there is no guarantee that the system presented
in the previous section continues to generate chaotic signals.
Consider such a system with linear phase low-pass filters de-
signed by using the window method with discrete-time cut-off
frequency 𝜔𝑐. Assume that 𝑠(𝑛) = 𝑐 (𝑥3(𝑛),𝑚(𝑛)) ≈ 𝑥3(𝑛);
that is, the message does not significantly affect the transmitted
chaotic signal. This is a reasonable hypothesis, considering
practical secure chaos-based communication. The goal is to
determine if 𝑥3 remains chaotic after introducing these filters.

The largest Lyapunov exponent ℎ can be used as a measure
of chaos (e.g. [7]). Positive ℎ means chaos. This exponent
was numerically evaluated by using signals with 5000 points.
Figure 2 shows the value of ℎ corresponding to the transmitted
signal as a function of the normalized 𝜔𝑐 for filters with 𝑁 =
10, 20, 50 and 100. The parameter values of the Hénon map
were fixed as 𝛼 = 0.9 and 𝛽 = 0.3. These choices, supported
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Fig. 2. Largest Lyapunov exponent ℎ in function of the normalized cut-off
frequency 𝜔𝑐 of the master filter for different filter orders 𝑁 . The solid lines
represent the average values; the dashed lines, the intervals determined from
the standard deviations.

by numerical tests, are convenient for obtaining chaotic signals
for several cut-off frequencies and filter orders.

Notice that ℎ is positive in a large range of 𝜔𝑐 for the most
of the tested filter orders, but negative values also appear (this
implies that 𝑠(𝑛) is not chaotic; in fact, it is periodic in such
cases). This and other numerical simulations reveal that the
higher the filter order, the larger the cut-off frequency range
where chaotic behavior can be found. A resume of these results
is presented in Fig. 3 (ℎ > 0 is represented by light gray and
ℎ < 0 by dark gray).

These experiments show that it is possible to generate
bandlimited chaotic signals by using this synchronization
scheme.

IV. CONCLUSIONS

The impact of inserting filters in a chaos-based communica-
tion scheme operating in bandlimited channel was analytically
and numerically investigated. For master and slave governed
by the Hénon map, it was analytically shown that the filter
coefficients do not influence synchronization. Also, the gener-
ated signals are chaotic for a large set of filter orders and cut-
off frequencies, according to numerical experiments. These
are relevant results if this synchronization scheme is intended
to be used for practical communication. The effect of noise
on synchronization in our chaos-based scheme remains to be
investigated.
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