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a b s t r a c t

In recent decades many articles have discussed the possibilities of chaos applied in

communications. However, the vast majority consider in practical terms the ideal

channel condition, which is clearly a restringing condition. Some papers show that

when there is an additive noise, the synchronization error often disrupts communica-

tion. In this work, we present results of a comparison between synchronization error

due to additive Gaussian noise when the transmitter and receiver are implemented by

single or coupled maps.

& 2011 Published by Elsevier B.V.
1. Introduction

Chaotic signals are characterized by a deterministic
and aperiodic behavior, as well as sensitive dependence
on initial conditions [1]. Their applications have been
considered in a variety of areas [2]. Signal Processing and
Telecommunications are not exception specially after the
seminal work [3]. Applications of chaos ranging from
digital and analog modulation to cryptography, to pseudor-
andom sequences generation and watermarking, among
many others, have been proposed [4–7]. Chaos may be
observed in devices used in signal processing as nonlinear
adaptive filters and phase-locked loop networks [8–11].

Due to their properties chaotic signals turn out to
occupy a wide bandwidth and to have impulsive auto-
correlation. Furthermore, the cross-correlations between
signals generated by different initial conditions present
low values [4,5,7,12]. These characteristics have been
behind the rationale for using chaotic signals as candidates
in spreading signal information.
Elsevier B.V.
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The application of the chaotic signals to modulate
independent narrowband sources leads to systems that
transmit signals with increased bandwidths and lower
levels of power spectral density in fashion similar to that
of a spread spectrum system [13]. This fact endows them
with similar qualities namely (i) they are difficult to
intercept for an unauthorized person; (ii) they are easily
hidden, i.e. for an unauthorized person, it is difficult to
even detect their presence in many cases; (iii) they are
resistant to jamming; and (iv) they provide a measure of
immunity to distortion due to multipath propagation.

The most part of the proposed chaos-based commu-
nication systems is based on chaos synchronization of a
master–slave structure where the slave system is driven
by a signal derived from the master [3,14].

The proposed systems work very well in ideal envir-
onments, although the presence of noises and distortions
in the channel bring unsatisfactory results when chaotic
synchronization is used, due to fact of the sensitive
dependence on initial conditions that characterize chaotic
signals [4,15,16].

In this paper we numerically investigate an alternative
model to decrease the master–slave synchronization error
when there is additive white Gaussian noise between
master and slave: using coupled lattices instead of coupled
single maps.

www.elsevier.com/locate/sigpro
dx.doi.org/10.1016/j.sigpro.2011.01.021
mailto:marcio.eisencraft@ufabc.edu.br
mailto:batista@interponta.com.br
dx.doi.org/10.1016/j.sigpro.2011.01.021


0 20 40 60 80
-2

-1

0

1

2

x n
 (

bl
ac

k)
 X

n 
(r

ed
)

340 350 360 370 380
-2

-1

0

1

2

0 100 200
n

10-4

10-3

10-2

10-1

100

δ n

0 100 200 300 400 500
n

10-4

10-3

10-2

10-1

100

Fig. 1. Master–slave system considering eI ¼ 0:3, (a) and (c) without noise, (b) and (d) SNR=8. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)
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Fig. 2. Master–slave system considering eI ¼ 0:3, (a) without noise, (b) SNR=8000 and (c) SNR=8.
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This paper is organized as follows: in Section 2 we
present the considered models and in Section 3 we
analyze synchronization error as a function of the sig-
nal-to-noise ratio, of the coupling strength and of the
number of maps in the lattices. Finally our conclusions are
left to Section 4.

2. Single maps and lattices master–slave
synchronization

As a first model, we consider two coupled 3D-Henon
maps [17,18] in a master–slave configuration with addi-
tive noise in the link between them. This way, the
coupling is given by

xnþ1 ¼�ax2
nþznþ1, ð1Þ

ynþ1 ¼�bxn, ð2Þ

znþ1 ¼ bxnþyn, ð3Þ

Xnþ1 ¼ ð1�eÞð�aX2
nþZnþ1ÞþeIIn, ð4Þ

Ynþ1 ¼�bXn, ð5Þ

Znþ1 ¼ bXnþYn, ð6Þ

In ¼ f ðxn,znÞþrn, ð7Þ
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Fig. 3. Master–slave system considering unidirectional coupling between two

noise, (b) SNR=8000 and (c) SNR=8.
where we have used lower-case letters for the master states
and capital letters for the slave states, f(x,z)=�ax2+z+1,
0reI r1 is the coupling strength, rn is zero-mean Additive
White Gaussian Noise (AWGN) with variance s2 and
n=0,1,2,yis the discrete time.

Considering a=1.07 and b=0.3 the three-dimensional
generalization of the Henon map presents chaotic orbits
for almost all initial conditions in the unity
sphere [17,18].

The synchronization error dynamics between the two
systems is given by

dn ¼ jxn�Xnj, ð8Þ

and we considered that synchronization occurs when
dno10�3. For the chosen parameters, it can be shown
that dn-0 as n-1 if s¼ 0 [19].

For measuring the noise intensity in the channel we
use the popular Signal-to-Noise Ratio (SNR) defined as the
mean power of the transmitted signal In divided by s2.
This way, the higher the SNR, the lower the relevance of
the noise in the channel. In an ideal situation, SNR¼1.

Fig. 1(a) displays the temporal evolution of the state
variable of the master (black line) and slave (red line) map
with eI ¼ 0:3 and no noise ðs2 ¼ 0Þ. Fig. 1(c) shows the
synchronization error and in this case we can see that the
two 3D-Henon synchronize after a transient time.
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global coupled map lattices for N=10, e1 ¼ e2 ¼ 0:7, eI ¼ 0:3, (a) without
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Similarly, Figs. 1(b) and (d) show the synchronization
performance at SNR=8, where the synchronization is
destroyed by the channel noise.

Fig. 2 shows the behavior of the synchronization error
for different values of the SNR. Decreasing SNR the maps
pass from synchronized to nonsynchronized behavior
exhibiting values of the synchronization error with irre-
gular oscillations.

As an option to increase the robustness of synchroni-
zation with respect to channel noise, let us consider now
coupled maps lattices instead of single maps in the
master–slave configuration. Coupled maps lattices are
the prototype of spatially extended dynamical systems,
that presents discrete space and time, while the state
variable is continuous. We consider two lattices where
each one presents a global coupling prescription, and the
coupling between the lattices is unidirectional. The cou-
pling is given by

xðiÞnþ1 ¼ ð1�e1Þð�axðiÞ2n þzðiÞn þ1Þþ
e1

N

XN

i ¼ 1

f ðxðiÞn ,zðiÞn Þ, ð9Þ

yðiÞnþ1 ¼�bxðiÞn , ð10Þ

zðiÞnþ1 ¼ bxðiÞn þyðiÞn , ð11Þ

XðiÞnþ1 ¼ ð1�e2Þð�aXðiÞ2n þZðiÞn þ1Þþ
e2

N

XN

i ¼ 1

f ðXðiÞn ,ZðiÞn Þþ
eI

N
In,

ð12Þ
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Fig. 4. Region I represents the values of SNR and the coupling strength in that th

synchronization. (a) two 3D-Henon, (b) two lattices with 10 3D-Henon each o
Y ðiÞnþ1 ¼�bXðiÞn , ð13Þ

ZðiÞnþ1 ¼ bXðiÞn þY ðiÞn : ð14Þ

In ¼
XN

i ¼ 1

f ðxðiÞn ,zðiÞn Þ�
XN

i ¼ 1

f ðXðiÞn ,ZðiÞn Þþrn: ð15Þ

where again we have used lower-case letters for the
master states and capital letters for the slave states. The
superscript index i=1,y,N identifies a particular map in
the N-maps lattice. We define the synchronization error
for the two coupled lattices as

Dn ¼
1

N

XN

i ¼ 1

xðiÞn �
XN

i ¼ 1

XðiÞn

�����

����� ð16Þ

and we say that master and slave synchronize if
Dno10�3.

Fig. 3 shows time behaviors of Dn for different SNR
values. Again the synchronization error increases when
the SNR decreases but the oscillations of the error present
amplitudes no greater than the values obtained in the
single map case for the same parameters, shown in Fig. 2.
Consequently, coupled lattices are more robust to noise
than two unidirectionally coupled maps.

In the next section we numerically analyze the syn-
chronization error as function of the coupling strength
and of the number of maps in the lattice.
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ne and (c) two lattices with 100 3D-Henon each one.
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Fig. 5. Vertical length of the nonsynchronization region versus lattice

size, for eI ¼ 0:3 (triangles), eI ¼ 0:5 (circles) and eI ¼ 1:0 (squares). We

can observe a power-law of SNRc as N grows with a slope ��1.
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3. Lattices synchronization performance

Fig. 4 illustrates how master–slave synchronization of
two lattices depends on the coupling strength eI , the SNR
and the number of maps in the lattices, N. The Region I
corresponds to the nonsynchronized states considered
when in a time interval ð5000rnr50 000Þ we have 5%
or more of the values presenting (a) dn410�3 for single
3D-Henon coupled maps, (b) Dn410�3 for two lattices
with 10 3D-Henon each one and (c) Dn410�3 for two
lattices with 100 3D-Henon each one. Otherwise, in the
Region II occurs the synchronized state.

The synchronization region depends on the lattice size.
To study this dependence we define the critical SNR, SNRc,
as the maximum value of the SNR that allows synchroni-
zation in the sense described in the previous paragraph.

Fig. 5 shows the SNRc as a function of the lattice size N

for eI ¼ 0:3 (triangles), eI ¼ 0:5 (circles) and eI ¼ 1:0
(squares), where we observe that the value of SNRc

decreases following a power-law with slope ��1. We
can also infer from this figure that for eI Z0:5 the coupling
strength almost does not influence SNRc.

4. Conclusions

In this paper we numerically compared single map and
lattices in terms of master–slave synchronization error
under AWGN. The synchronization is analyzed as function
of the coupling strength and the SNR.

We have observed that the synchronization is more
robust to noise when the number of maps in the lattice
increases. The critical coupling strength does not depend on
the lattice size. Moreover, the dependence of the critical SNR
with the lattice size can be fitted by a power-law, where the
slope is approximately equal to �1.

These results may imply that using lattices instead of
single maps can be a way to improve performance of
chaos-based communication systems in more realistic
environments.

As future works we will extend this results to contin-
uous-time signals and systems, as well as we will look for
analytical results.
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