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a b s t r a c t

Chaotic signals have been considered potentially attractive in many signal processing

applications ranging from wideband communication systems to cryptography and

watermarking. Besides, some devices as nonlinear adaptive filters and phase-locked

loops can present chaotic behavior. In this paper, we derive analytical expressions for

the autocorrelation sequence, power spectral density and essential bandwidth of chaotic

signals generated by the skew tent map. From these results, we suggest possible

applications in communication systems.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

There are a large number of researches involving
chaotic signal applications in a variety of areas [1]. When
it comes to Signal Processing and Telecommunications,
these researches have being intensified after the seminal
work by Pecora and Carroll [2]. Since then, the possibi-
lities of applications of chaos in these fields have grown,
ranging from digital and analog modulation to crypto-
graphy, to generation of pseudorandom sequences, to
watermarking, among many others (see e.g. [3–6]).
Besides, models of many devices used in signal processing
as nonlinear adaptive filters and phase-locked loop net-
works can present chaotic behavior [7–10].

Here we consider that a limited signal is chaotic if it is
deterministic, aperiodic and presents sensitivity to initial
conditions [11]. This last property means that, if the
ll rights reserved.

São Paulo, Escola

municac- ões e Con-
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generator system is initialized with a slightly different
initial condition, the obtained signal diverges very quickly
from the original one. In this paper we focus on one-
dimensional discrete-time chaotic signals.

Although there is a large amount of published works
on chaos applications in communications, just a few
concentrate on spectral characteristics of chaotic signals.
Due to the properties that define them, literature uses to
consider that they occupy a large frequency range, that
they have impulsive autocorrelation sequence (ACS) and
that the cross-correlations of signals generated by differ-
ent initial conditions present low values, see e.g. [3,4,6,12].
Some papers numerically evaluate the power spectral
density (PSD) of chaotic signals generated by specific
systems, e.g. [13–15]. Sakai and Tokumaru [16] analyti-
cally describe the ACS generated by a skew tent family of
maps, but do not go further presenting results on the PSD
of these signals. Papadopoulos and Wornell [17] deduce
the PSD for the tent map and Isabelle and Wornell [18]
and Miyaguchi and Aizawa [19] obtained rather general
formulas for the PSD of classes of maps. However, to
describe the general spectral characteristics of chaotic
signals and the consequences they cause when applying
these signals in communications is still an open problem.
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For our studies we have chosen the skew tent map f Ið�Þ

because (i) the signals generated by this map present rich
and different behaviors but easily summarized; (ii) it is
piecewise linear and their orbits present uniform invar-
iant density which allow analytical calculations; (iii) the
tent map studied in [17] is a particular case of the skew
tent map permitting comparisons.

Recently, two of us numerically determined the ACS
and PSD of the chaotic signals generated by f Ið�Þ [20]. The
objective of this manuscript is to analytically demonstrate
these results thus validating them.

The paper is divided into five sections. The map f Ið�Þ

and its main characteristics are described in Section 2. ACS
and PSD of the chaotic orbits generated by this map are
deduced in Section 3. The relationship between essential
bandwidth and Lyapunov exponents is investigated in
Section 4. Finally, the conclusions and possible applica-
tions of our results are presented in Section 5.

2. Skew tent map

A one-dimensional discrete-time dynamical system
or map can be expressed by the difference equation
sðnþ 1Þ ¼ f ðsðnÞÞ, where n � 0 is an integer, f ð�Þ is a
function with the same domain and range space U � R

and sð0Þ 2 U. For each initial condition sð0Þ ¼ s0, an orbit or
signal becomes defined by sðn; s0Þ ¼ f n

ðs0Þ where f n
ð�Þ is

the n-th successive application of f ð�Þ. For simplicity of
notation, an orbit is symbolized by sðnÞ whenever s0 is
irrelevant.

Here we focus on the skew tent map f Ið�Þ [21], defined
as a modified version of the one proposed in [16]. This
piecewise-linear map f Ið�Þ is given by sðnþ 1Þ ¼ f IðsðnÞÞ

where

f IðsÞ ¼

2

aþ 1
sþ

1� a
aþ 1

; �1osoa;

2

a� 1
s�

aþ 1

a� 1
; a � so1;

8>><
>>: (1)

fa; sð0Þg � U ¼ ð�1;1Þ. The parameter a determines the
coordinate of the tent peak. Fig. 1(a) illustrates f Ið�Þ for
a ¼ 0:1.

It can be shown [22] that the Lyapunov exponent hI of
almost every orbit generated by f Ið�Þ is a function of a and
can be calculated by

hI ¼
aþ 1

2
ln

2

aþ 1

� �
þ

1� a
2

ln
2

1� a

� �
40. (2)

Thus, the aperiodic signals generated by f Ið�Þ are chaotic
[11]. The maximum value of hI is ln 2 occurring for a ¼ 0.

The invariant density pðsÞ of the orbits of f Ið�Þ is
uniform [23,24]. In fact, pðsÞ ¼ 1

2 ; �1oso1, for any a.
This means that samples of the signals generated by this
map are uniformly distributed over the interval ð�1;1Þ. So,
they are zero-mean and their mean power P is

P ¼

Z 1

�1
s2pðsÞds ¼

1

3
. (3)

In the following sections, we derive the ACS and PSD of
the orbits generated by this map.
3. Autocorrelation sequence and power spectral density

Chaotic signals generated by a map can be considered
as sample functions of an ergodic stochastic process [23].
Hence, for a fixed value of a, a sample function can be
associated to an initial condition s0 of f Ið�Þ generating a
chaotic orbit. Bearing this in mind, we can deduce the ACS
and the PSD corresponding to f Ið�Þ as we proceed with
ordinary stochastic processes.
3.1. Autocorrelation sequences

The following development employed to deduce the
ACS is inspired by [16]. However, in that paper PSD and
bandwidth were not analytically calculated.

The ACS RðkÞ for an integer k is defined by

RðkÞ � E½sðnÞsðnþ kÞ�; k � 0; 8n � 0. (4)

The expected value E½�� is taken over all initial conditions
that generate chaotic signals. For negative values of k, we
conveniently consider

RðkÞ � Rð�kÞ; ko0. (5)

In the following deduction, we consider k � 0 and,
to simplify notation, we define sðnÞ � x and sðnþ kÞ ¼

f k
I ðxÞ � y.

Thus, as y is completely determined by x, the joint
probability density function pðx; yÞ is [25]

pðx; yÞ ¼ pðxÞpðyjxÞ ¼ pðxÞdðy� f k
I ðxÞÞ, (6)

where pðyjxÞ is the conditional density of y given x, pðxÞ is
the invariant density of f Ið�Þ and dð�Þ is the Dirac unit
impulse function [25].

By using pðsÞ ¼ 1
2 ; �1oso1 and the sampling property

of the unit impulse function [25] then

RðkÞ ¼ E½xy� ¼

Z 1

�1

Z 1

�1
xypðx; yÞdx dy

¼

Z 1

�1

Z 1

�1
xypðxÞdðy� f k

I ðxÞÞdx dy

¼
1

2

Z 1

�1
x

Z 1

�1
ydðy� f k

I ðxÞÞdy

 !
dx ¼

1

2

Z 1

�1
xf k

I ðxÞdx.
(7)

The map f Ið�Þ is composed of two linear segments
with opposite signal slopes. The image of each of these
segments is the domain U ¼ ð�1;1Þ of the map. Conse-

quently, the graphic of f k
I ð�Þ is formed by 2k segments.

Fig. 1(a), (b) and (c) are graphics of f IðxÞ, f 2
I ðxÞ and f 3

I ðxÞ for

a ¼ 0:1. A fragment of f k
I ðxÞ for a generic k is shown in

Fig. 1(d). The m-th solution of the equation f k
I ðxÞ ¼ 1 is

represented by akðmÞ, for 1 � m � 2k�1. The m-th solution

to the equation f k
I ðxÞ ¼ �1 is denoted as bkðmÞ, where

0 � m � 2k�1.
The linear segments from ðbkðm� 1Þ;�1Þ to ðakðmÞ;1Þ

are given by

y ¼
2x� akðmÞ � bkðm� 1Þ

akðmÞ � bkðm� 1Þ
(8)
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Fig. 1. Maps (a) f IðxÞ; (b) f 2
I ðxÞ; (c) f 3

I ðxÞ for a ¼ 0:1. In (d), a fragment of f k
I ðxÞ for a generic k is shown.
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and the linear segments from ðakðmÞ;1Þ to ðbkðmÞ;�1Þ are
given by

y ¼
2x� akðmÞ � bkðmÞ

akðmÞ � bkðmÞ
. (9)

By substituting Eqs. (8) and (9) in Eq. (7),

RðkÞ ¼
1

2

X2k�1

m¼1

Z akðmÞ

bkðm�1Þ
x

2x� akðmÞ � bkðm� 1Þ

akðmÞ � bkðm� 1Þ

� �
dx

"

þ

Z bkðmÞ

akðmÞ
x

2x� akðmÞ � bkðmÞ

akðmÞ � bkðmÞ

� �
dx

#
. (10)
In order to derive an analytical expression for RðkÞ, both
integrals in Eq. (10) must be solved. Thus

RðkÞ ¼
1

12

X2k�1

m¼1

½ðakðmÞ � bkðm� 1ÞÞ2 � ðakðmÞ � bkðmÞÞ
2
�.

(11)

The process of iterating the map one time, from f k
I ðxÞ to

f kþ1
I ðxÞ, is illustrated in Fig. 2 where w and z are the roots

of f k
I ðxÞ ¼ a. To obtain w and z, y is substituted for a,

respectively, on Eqs. (8) and (9) and x is isolated. Thus,
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I ð�Þ.
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these roots are

w ¼
aþ 1

2
ðakðmÞ � bkðm� 1ÞÞ þ bkðm� 1Þ, (12)

z ¼
aþ 1

2
ðakðmÞ � bkðmÞÞ þ bkðmÞ. (13)

Notice that Rðkþ 1Þ is given by

Rðkþ 1Þ ¼
1

12

X2k

m¼1

½ðakþ1ðmÞ � bkþ1ðm� 1ÞÞ2

� ðakþ1ðmÞ � bkþ1ðmÞÞ
2
�, (14)

where from Fig. 2 the following relations are inferred:

bkþ1ð2m� 2Þ ¼ bkðm� 1Þ; akþ1ð2m� 1Þ ¼ w,

bkþ1ð2m� 1Þ ¼ akðmÞ; akþ1ð2mÞ ¼ z,

bkþ1ð2mÞ ¼ bkðmÞ. (15)

Therefore, Rðkþ 1Þ is written as

Rðkþ 1Þ ¼
a

12

X2k�1

m¼1

½ðakðmÞ � bkðm� 1ÞÞ2 � ðakðmÞ � bkðmÞÞ
2
�.

(16)

By comparing Eqs. (11) and (16) , then

Rðkþ 1Þ ¼ aRðkÞ. (17)

Solving this difference equation with initial condition
Rð0Þ ¼ P ¼ 1

3 and using Eq. (5), we obtain

RðkÞ ¼ 1
3a
jkj, (18)

for any integer k.
Fig. 3 shows the ACS curves for some values of a.
Observe that RðkÞ monotonically decays for positive

values of a and it oscillates for negative values of a
indicating that, in this case, for almost every n and sð0Þ,
samples sðn; s0Þ and sðnþ 1; s0Þ have different signals.

In addition, for a1 ¼ �a2 then

Ra2
ðkÞ ¼ ð�1ÞkRa1

ðkÞ, (19)

where Ra1
ðkÞ and Ra2

ðkÞ are the ACS for a ¼ a1 and a ¼ a2,
respectively.
These results reveal that chaotic signals do not
necessarily have impulsive ACS. This is the case only for
a ¼ 0, as pointed out by [17].

3.2. Power spectral density

The PSD SðoÞ is the discrete-time Fourier transform
(DTFT) of RðkÞ, considering k as the time variable. By
calculating the DTFT of Eq. (18), we obtain

SðoÞ ¼
X1

k¼�1

RðkÞe�jok ¼
1� a2

3ð1þ a2 � 2a cosðoÞÞ
. (20)

Fig. 4 shows the PSD for some values of a. The value of a
controls the way the power is distributed along the
frequency axis. The higher the absolute value of a, the
smaller the frequency band where power is concentrated.
Furthermore, the signal of a indicates if the concentration
occurs in low or high frequency range.

PSDs of signals generated by maps with opposite
values of a present symmetry with respect to o ¼ p=2,
i.e. if a1 ¼ �a2, then Sa1

ðoÞ ¼ Sa2
ðoþ pÞ, where Sa1

ðoÞ and
Sa2
ðoÞ are the PSDs of the orbits generated by a ¼ a1 and

a ¼ a2, respectively. This frequency shift is a consequence
of Eq. (19).
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4. Essential bandwidth

PSD properties can be quantified by using the essential

bandwidth concept. The essential bandwidth B is defined
as the length of the frequency interval where q ¼ 95% of
the signal power is concentrated [25]. To calculate B for a
signal where the power is concentrated in low frequen-
cies, the equation

Z B

0
SðoÞdo ¼ q

Z p

0
SðoÞdo (21)
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Fig. 4. PSD of the signals generated by f IðsÞ for different values of a.
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Fig. 5. The value of B=p as function of (a
must be solved in B. Because of the symmetry property of
SðoÞ, the essential bandwidths of signals generated by
opposite values of a are equal. Hence, only positive values
of a are taken into account here.

By using Parseval’s Theorem and Eq. (3), thenZ p

0
SðoÞdo ¼ p

3
(22)

and the expression for B, written as

B ¼ 2 arctan tan
qp
2

� � a� 1

aþ 1

����
����

� �
(23)

is obtained by substituting Eqs. (22) and (20) into Eq. (21).
Fig. 5 shows as B=p varies with jaj and hI (given by Eq. (2)).
A behavior similar to a white uniform noise process
corresponds to the case a ¼ 0, because B=p ¼ q ¼ 0:95
(remember that the invariant density pðsÞ ¼ 1

2 is uniform).
An extremely narrowband process stands for a ’ 1.
Observe that for all values of a, then hI40 and the signals
are in fact chaotic.

5. Conclusions

In this paper we have analytically deduced the ACS,
PSD and essential bandwidth of the chaotic signals
generated by the skew tent map. Our exact results are in
agreement with the numerical simulations performed by
two of us [20].

Our main conclusion is: by adequately choosing the
value of a, one can obtain a chaotic signal with the desired
bandwidth and with its power concentrated in low or high
frequencies.
.5 0.6 0.7 0.8 0.9 1
α|

0.4 0.5 0.6 0.7
h

) jaj and (b) Lyapunov exponent hI .
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The analytical expressions presented in this paper
confirm the possibility of easily generating chaotic signals
with a specific essential bandwidth. This means that the
usual assumption about chaos implying broadband un-
correlated signals is not always true.

We have shown how a is related to the essential
bandwidth B for the skew tent map. Hence, for a required
B, from Eq. (23) the corresponding value of a can be
determined and, consequently, the piecewise-linear map
that generates chaotic orbits with this particular B.

These results suggest new applications for chaotic
signals in communication systems. For instance, different
symbols can be associated to different values of jaj and
points of orbits generated by the corresponding maps
would be transmitted. In the receiver the essential
bandwidth of the received signal would be estimated
and the value of jaj together with the associated symbol
would be determined.

Besides, one can think about frequency multiplexing of
chaotic signals as is done in conventional modulations.
Using positive and negative values for a it is possible to
generate different chaotic signals that can be added and
afterwards be separated by using a filter bank [26].

Other possible future direction of work it would be to
extend our results to other one-dimensional and even to
higher dimensional chaotic signals. We think that it could
be possible to model practical signals as speech, images
and signals with intermittencies using discrete-time maps
that generate chaotic signals with their spectra.
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