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Abstract: In this paper we extend an estimation technique based on Viterbi algorithm for
discrete-time chaotic signals immersed in noise. The proposed modification allows for orbits
generated by maps with nonuniform invariant density to be estimated. This modified Viterbi
algorithm is used in two digital modulation schemes: the Modified Maximum Likelihood Chaos
Shift Keying using one and two maps. Both have better symbol error rate characteristics than
non-coherent chaos communication schemes.
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1. INTRODUCTION

Recently, various digital modulations using chaotic carriers
have been proposed, e.g. [Kennedy et al., 2000b, Lau
and Tse, 2003, Stavroulakis, 2005] and references therein.
Among them, Chaos Shift Keying (CSK) and its variants
based on noncoherent or differential demodulation are
promising for practical applications [Kolumbán et al.,
1998a,b, Kennedy et al., 2000a,b, Lau and Tse, 2003,
Stavroulakis, 2005]. However, these systems still have
lower performance than conventional equivalent ones when
it comes to symbol error rate in Additive White Gaussian
Noise (AWGN) channel [Kennedy et al., 2000b, Lau and
Tse, 2003, Xiaofeng et al., 2004, Escribano et al., 2006].
This happens basically because the receiver does not
use information on the chaotic maps that generate the
transmitted signals. The performance of these systems
would be basically the same if one uses random instead
of chaotic signals.

An approach for improving these results is to use estima-
tion techniques to counter channel noise before demodu-
lation [Kisel et al., 2001, Xiaofeng et al., 2004, Escribano
et al., 2006].

An interesting possibility is the Viterbi Algorithm (VA) as
proposed originally by Kisel et al. [2001]. It interprets the
chaotic signals as Markov processes that, at each instant,
assume one of NS possible states defined by a partition of
the domain U in NS subintervals. Kisel et al. [2001] used an
uniform partition, which is a suitable choice for maps with
uniform invariant density. Here we extend these results for
general one-dimensional maps using adequate partitions.
Our proposal is called the Modified VA (MVA).

The objectives of this paper are twofold: i) to describe the
MVA and ii) to study the application of MVA in com-
munication systems, like the Maximum-Likelihood CSK
(ML-CSK) proposed by Kisel et al. [2001]. ML-CSK can
be seen as an identification problem since in the receiver
it is necessary to identify the map used to transmit each
symbol.

The paper is organized as follows. In Section 2 we describe
the MVA. In Section 3 we present the application of
estimation methods in identification of chaotic systems
and its possible uses in chaotic communications. Finally,
Section 4 deals with our conclusions.

2. THE MODIFIED VITERBI ALGORITHM FOR
ESTIMATING CHAOTIC SIGNALS

The estimation problem treated here can be stated as
follows. An N -point sequence s′(n) is observed. It is
modeled as

s′(n) = s(n) + w(n), 0 ≤ n ≤ N − 1, (1)

where s(n) is an orbit of a one-dimensional system

s(n) = f(s(n − 1)) (2)

and w(n) is AWGN with variance σ2. The map f(.) is
defined in an interval U . We seek an estimate ŝ(n) of the
orbit s(n).

Consider the domain U as the reunion of disjoint intervals
Uj, j = 1, 2, . . . , NS . In a given instant n, we define that
the signal state is q(n) = j if s(n) ∈ Uj . A (k + 1)-length
state sequence is represented by

qk = [q(0), q(1), . . . , q(k)]
T

(3)

and the first k + 1 observed samples by

s′k = [s′(0), s′(1), . . . , s′(k)]
T

. (4)
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To simplify notation, we define the N -length sequences
qN−1 ≡ q and s′N−1 ≡ s′. Furthermore, the center of the
interval Uj is denoted by B(j).

Given s′, we seek an estimated state sequence q̂ that
maximizes the posterior probability

P (q̂|s′) = max
q

P (q|s′). (5)

Using Bayes’ theorem,

P (q|s′) =
p(s′|q)P (q)

p(s′)
, (6)

where p(s′) and p(s′|q) are, respectively, the Probability
Density Function (PDF) of s′ and the PDF of s′ given that
the state sequence of the signal is q. The probability P (q)
is the chance of obtaining the state sequence q when f(.)
is iterated.

This way, we must find the argument q̂ so that

q̂ = arg max
q

P (q|s′) = arg max
q

p(s′|q)P (q). (7)

It is important to notice that because of the form as the
signals are generated and of the AWGN model, qk is a first
order Markov process when we consider k as time variable.
So,

P (qk) = P (q(k)|q(k − 1))P (qk−1) , (8)

where P (q(k)|q(k − 1)) is the transition probability from
the state q(k − 1) to q(k).

Besides, taking into account the independency of noise
samples,

p(s′k|qk) =

k
∏

n=0

p (s′(n)|q(n)) =

k
∏

n=0

pw(s′(n) − s(n)) ≈

k
∏

n=0

pw (s′(n) − B (q(n))) , (9)

where pw(.) is the PDF of the noise. The approximation
in Eq. (9) is valid only if NS is sufficiently large.

Using Eqs. (7-9), we can express P (q|s′) as a product of
state transition probabilities by conditional observation
probabilities. Thus we conclude that q̂ is the sequence that
maximizes

(

N−1
∏

n=1

P (q(n)|q(n − 1)) p (s′(n)|q(n))

)

P (q(0)) . (10)

Choosing the partition Uj, j = 1, 2, . . . , NS so that the
probability of each possible state q(n) = j is the same for
all j, the last term in Eq. (10), P (q(0)), can be eliminated
and we get

q̂ = arg max
q

N−1
∏

n=1

P (q(n)|q(n − 1)) p (s′(n)|q(n)), (11)

as Kisel et al. [2001] do. Note, however, the importance of
the choice of the partition in obtaining this result. As far
as we know, this fact was not noticed before.

To find q that maximizes the product in Eq. (11) is a
classic problem for which an efficient solution is given by
VA [Viterbi, 1967], applied to the estimation of chaotic
signals for the first time by Marteau and Abarbanel [1991].

Using VA avoids doing an exhaustive search on the (NS)N

possible state sequences for an N -point signal.

Let γ(n, j) be the probability of the most probable state
sequence, in the maximum likelihood sense, that ends in
state j, at instant n ≥ 1, given the observed sequence s′,
or

γ(n, j) = max
qn

P (qn−1, q(n) = j|s′). (12)

Using Eqs. (8-9), γ(n, j) can be calculated in the recursive
form

γ(n, j) = max
i

[γ(n − 1, i)aij ] bj (s′(n)) , (13)

for n > 1 where

aij = P (q(n) = j|q(n − 1) = i) (14)

and
bj (s′(n)) = p (s′(n)|q(n) = j) . (15)

The coefficients aij are the state transition probabilities
that depend on the map f(.) and on the partition. We
define the transition probabilities matrix as

ANS×NS
= aij , 1 ≤ i, j ≤ NS . (16)

The coefficients bj(.) are the observation conditional prob-
abilities that depend only on the PDF of the noise pw(.).

VA works in two passes, the forward and the backward
one:

• Forward pass: for each instant 1 ≤ n ≤ N − 1,
Eqs. (12 - 13) are used to calculate γ(n, j) for the
NS states. Among the NS paths that can link states
j = 1, . . . , NS at instant n − 1 to state j at instant
n, only the most probable one is maintained. The
matrix ϕ(n, j), n = 1, . . . , N − 1, j = 1, . . . , NS,
stores the state at instant n− 1 that takes to state j
with maximal probability. In the end of this step, at
instant n = N − 1, we select the most probable state
as q̂(N − 1).

• Backward pass: for obtaining the most probable
sequence, it is necessary to consider the argument i
that maximizes Eq. (13) for each n and j. This is done
defining

q̂(n) = ϕ (n + 1, q̂(n + 1)) , n = N − 2, . . . , 0. (17)

Once obtained q̂(n), the estimated orbit is given by the
centers of the subintervals related to the most probable
state sequence,

ŝ(n) = B (q̂(n)) , n = 0, . . . , N − 1. (18)

To apply the VA it is necessary to choose a partition so
that the probability of an orbit point to be in any state
is the same, so that P (q(0)) in Expression (10) can be
eliminated. This means that if a given map has invariant
density p(s) [Lasota and Mackey, 1985], we should take NS

intervals Uj = [uj ; uj+1] so that, for every j = 1, . . . , NS,
∫ uj+1

uj

p(s)ds =
1

NS

. (19)

Using the ergodicity of chaotic orbits [Lasota and Mackey,
1985], it is possible to estimate p(s) for a given f(.) and
consequently to find the correct partition.

The maps taken as examples by Xiaofeng et al. [2004] and
Kisel et al. [2001] have uniform invariant density and the
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authors have proposed the use of equal length subintervals.
However, this choice cannot be generalized for an arbitrary
one-dimensional map.

The use of VA with the correct partition is called here
Modified Viterbi Algorithm (MVA).

As illustrative examples, consider the uniform invariant
density tent map defined in U = [−1, 1] as

fT (s) = 1 − 2|s| (20)

and the nonuniform invariant density quadratic map

fQ(s) = 1 − 2s2, (21)

defined over the same U [Eisencraft and Baccala, 2008].
It can be shown [Lasota and Mackey, 1985] that, the
invariant density of these maps are

pT (s) = 1/2 (22)

and

pQ(s) =
1

π
√

1 − s2
, (23)

respectively.

An example of orbit for each of these maps and their
respective invariant densities are shown in Figures 1 and
2. The partition satisfying Eq. (19) for each case is also
indicated when NS = 5.
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Fig. 1. (a) Tent map fT (.); (b) example of a 100-point
signal generated by fT (.); (c) invariant density along
with the partition satisfying Eq. (19) for NS = 5.

Figures 3 and 4 present how the performance of VA varies
for different values of NS and N = 10. In Figure 3 the
generating map is fT (.) whereas fQ(.) is used in Figure 4.
To illustrate the importance of the correct partition choice,
Figure 4(a) displays the results of mistakenly using a
uniform partition whereas Figure 4(b) displays the results
of using the correct partition according to Eq. (19). The
input and output SNR are defined as

SNRin =

∑N−1

n=0
s2(n)

Nσ2
(24)

and

SNRout =

∑N−1

n=0
s2(n)

∑N−1

n=0
(s(n) − ŝ(n))

2
. (25)

For each SNRin of the input sequence, the average SNRout

of 1000 estimates is shown.
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Fig. 2. (a) Quadratic map fQ(.); (b) example of a 100-point
signal generated by fQ(.); (c) invariant density along
with the partition satisfying Eq. (19) for NS = 5.
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Fig. 3. SNRout of VA for an orbit of length N = 10
using different numbers of partition intervals NS .
The generating map is fT (.). Performance limits of
Eq. (26) are indicated by dashed lines.

Choosing the right partition, the estimation algorithm has
an increasing performance as a function of SNRin until
SNRout attains a limit value which depends on NS . This
limiting value can be calculated assuming that, in the best
possible case, the estimation error is caused by domain
quantization alone. As such, for an uniform partition,
the estimation error is an uniformly distributed random
variable in the interval [−1/NS, 1/NS]. Therefore the mean
squared value of s(n) − ŝ(n) is limited by 1/

(

3N2
S

)

.
Additionally, s(n) is uniformly distributed in [−1, 1] and,
consequently, has a mean squared value of 1/3. Hence if
all the points are in the correct subintervals, the expected
value of SNRout, E[SNRout] in dB is

E [SNRout] = E

[

10 log

∑N−1

n=0
s2(n)

∑N−1

n=0
(s(n) − ŝ(n))2

]

=

= 10 log
N/3

N/(3N2
S)

= 20 logNS . (26)
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Fig. 4. SNRout of the Viterbi algorithm for an orbit of
length N = 10 using different number of partition
intervals NS. The generating map is fQ(.). Results
for an uniform partition (a) are contrasted to the
improved values in (b) using a partition satisfying Eq.
(19). Limits of Eq. (26) are indicated by dashed lines.

These limits, which are exact only in the uniform partition
case, are indicated with dashed lines for each NS value in
Figures 3 and 4.

Comparing Figures 4(a) and (b) reveals the critical role
played by the partition choice. Clearly the uniform parti-
tion of Xiaofeng et al. [2004] and Kisel et al. [2001] cannot
attain the best possible SNRout for the quadratic map
whose invariant density is not uniform.

Figures 3 and 4(b) show that the algorithm has a slightly
better performance for the quadratic map. This result
confirms the importance of the choose of map to be used.
The modification on VA proposed here permits testing
more maps looking for an optimal one.

3. CHAOTIC SYSTEM ESTIMATION AND
IDENTIFICATION: APPLICATIONS IN

COMMUNICATION

In this section we propose two binary digital modulation
using chaotic system identification. They are the Modi-

fied Maximum Likelihood Chaos Shift Keying (MMLCSK)
using one and two maps. Both are based on the ones
proposed by Kisel et al. [2001]. We have modified them
using nonuniform partitions for the MVA as discussed in
the previous section. This way, it is possible to test the
performance of nonuniform invariant density maps.

3.1 MMLCSK using two maps

In this case, each symbol is associated with a different map
f1(.) and f2(.). To transmit a 0, the transmitter sends an
N -point orbit s1(.) of f1(.) and to transmit a 1, it sends
an N -point orbit s2(.) of f2(.).

Maps must be chosen so that their state transition proba-
bilities matrix A1 and A2 are different. Estimating s1(n)
using MVA with A2 must produce a small estimation gain
or even a negative (in dB) one. The same must happen
when we try to estimate s2(n) using A1.

The receiver for MMLCSK using two maps is shown in
Figure 5. The Viterbi decoders try to estimate the original
s(n) using A1 or A2. For each symbol, the estimated state
sequences are q̂1 and q̂2.
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Fig. 5. Receiver for MMLCSK using two maps.

Given the observed samples, zm1 e zm2 are proportional to
the probability of obtaining q̂1 and q̂2 respectively. More
precisely,

zm1 =

N−1
∏

n=1

P (q̂1(n)|q̂1(n − 1),A1)p(s′(n)|q̂1(n)), (27)

zm2 =

N−1
∏

n=1

P (q̂2(n)|q̂2(n − 1),A2)p(s′(n)|q̂2(n)). (28)

In this equations we have used the likelihood measure of
Eq. (11). The probability P (q̂(n)|q̂(n − 1),Ai) can be
read directly from Ai and p(x′(n)|q̂(n)) depends only on
the noise and can be approximated as described by Dedieu
and Kisel [1999].

Choosing the largest between zm1 e zm2 we can identify
the map used in the transmitter with maximum likelihood
and, this way, decode the transmitted symbol.

Given a map f1(.), an important problem is to find a map
f2(.) so that its probability transition matrix A2 permits
to discriminate between the likelihood measures of Eqs.
(27) and (28). For piecewise linear maps on the interval
U = [−1, 1] we can use the following rule adapted from
[Kisel et al., 2001]:

f2(s) =

{

f1(s) + 1, f1(s) < 0
f1(s) − 1, f1(s) ≥ 0

. (29)

Figure 6 shows the construction of map f2(.) from f1(.) =
fT (.). This way, f1(s) and f2(s) map a point s a unity
away.
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Fig. 6. Construction of map f2(.) for f1(.) = fT (.) using
Eq. (29).

In this case, using an uniform partition for NS = 5 we
have

A1 =









1/2 1/2 0 0 0

0 0 1/2 1/2 0

0 0 0 0 1

0 0 1/2 1/2 0

1/2 1/2 0 0 0









,A2 =









0 0 1/3 1/3 1/3

1/3 1/3 0 0 1/3

0 1/2 1/2 0 0

1/3 1/3 0 0 1/3

0 0 1/3 1/3 1/3









.

(30)

It can be shown that almost every orbit generated by f2(.)
are in fact chaotic [Kisel et al., 2001]. Note however that
this method is not necessarily optimal and must be used
prudently. There is no guaranty that the orbits of f2(.)
given by Eq. (29) are chaotic in general.

For instance, if we apply the same strategy for the
quadratic map f1(s) = fQ(s), we obtain f2(s) show in
Figure 7. All the orbits of f2(.) converge to a stable fixed
point at s = 0 and hence are not chaotic at all [Devaney,
2003].
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Fig. 7. Construction of f2(.) for f1(.) = fQ(.) using
Eq. (29). Note the attracting fixed point.

In the simulations, we have used f2(.) = −fQ(.) shown in
Figure 8. This map is possibly not optimum because points
next to the roots of f1(.) and f2(.) are mapped near to each
other by both functions. The transition matrix for these
two maps for NS = 5 using the partition obeying Eq. (19)
are

A1 =









1/2 1/2 0 0 0

0 0 1/2 1/2 0

0 0 0 0 1

0 0 1/2 1/2 0

1/2 1/2 0 0 0









, A2 =









0 0 0 1/2 1/2

0 0 1 0 0

1 0 0 0 0

0 0 1 0 0

0 0 0 1/2 1/2









.

(31)

In this case, it can be shown that f2(.) generates chaotic
orbits [Devaney, 2003]. However, note that a23 e a43

exhibit nonzero probabilities in both matrices what will
probably generate errors in the MMLCSK receptor. This
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Fig. 8. Construction of f2(.) for f1(.) = fQ(.) used in
simulations.

way, we expect a worst performance of this couple of maps
when compared to the one with matrices given by Eq. (30).

To find f2(.) given a map f1(.) that presents optimal prop-
erties when it comes to identification throw the matrices
A1 and A2 is an open problem. As shown by the last
example, it is necessary to impose that f2(.) generates
chaotic orbits.

3.2 MMLCK using one map

As an alternative, it is possible to construct a communica-
tion system based on MVA estimation using just one map.
In this case, according to the symbol that is intended to be
communicated, the chaotic signal is directly transmitted
or an invertible transformation is applied on the sequence.
This operation must modify the sequence so that it is no
more a valid orbit of the used map. This way, it is no longer
necessary to find a map f2(.).

In the binary case, for maps that are not odd, this
transformation can be, for instance, T (s) = −s witch
can be undone multiplying again the sequence by −1. To
transmit a 0, we send an N -point orbit s1(.) of f1(.). To
transmit a 1, we send −s1(.).

The receiver for this system is shown in Figure 9. The
variables zm1 and zm2 are calculated by Eq. (27). However,
when calculating zm2, s′(n) is substituted by −s′(n). So,
when a 0 is received, the likelihood expressed by zm1 must
be greater than zm2 because −s1(n) is not an orbit of f1(.).
The opposite is true when a 1 is received.
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Fig. 9. Receiver for MMLCSK using two maps.

It is relevant to note that this scheme can be easily
generalized for an M -ary modulation, M > 2. For this it is
necessary just to consider other invertible transformations.

3.3 Numerical simulations

Figure 10 show the Symbol Error Rate (SER) as a function
of the Bit Energy per Power Spectral Density of the
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AWGN (Eb/N0) for the MMLCSK using one and two
maps. In the estimation and identification process it was
considered NS = 100 subsets and N = 50 samples per bit.
For sake of comparison, it is also shown the performance of
Chaos On-Off Keying (COOK) [Kolumbán et al., 1998a],
the non-coherent chaos communication that does not use
estimation with best performance. This system is based
only on energy estimation to decode the signal.

Our simulations show that MMLCSK using one map has
a slightly better performance than MMLCSK using two
maps. Besides fT (.) performs better than fQ(.). This last
results confirms the importance of the choose of map and
transform to be employed.
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Fig. 10. Symbol Error Rate (SER) for the tested MMLCSK
modulations. Each bit was represented by N = 10
samples.

4. CONCLUSIONS

In this paper we present a generalization of Viterbi al-
gorithm proposed by Kisel et al. [2001], the Modified
Viterbi Algorithm (MVA). The modification consists of
using nonuniform partition of the domain to allow for
orbits of maps with nonuniform invariant density to be
correctly estimated.

Following, MVA was applied in the identification of chaotic
maps from its orbits and its application in communica-
tions. It was proposed the MMLCSK, which is the MLCSK
using MVA. Compared with methods that do not use
estimation, these systems performs better in terms of SER
in AWGN. The cost of this improvement is the complexity
of the receiver. However, the information is coded on the
dynamic of the chaotic system and not in easily measured
properties like energy, what makes it more difficult to be
detected without authorization. It is necessary to know the
state transitions matrices to demodulate.

More research is necessary in order to find optimal cou-
ple maps and transforms to optimize the discrimination
between maps in the receiver.
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