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a Universidade Presbiteriana Mackenzie, Escola de Engenharia, São Paulo, Brazil
b Universidade de São Paulo, Escola Politécnica, São Paulo, Brazil
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Abstract

We derive the Cramer-Rao Lower Bound (CRLB) for the estimation of initial conditions of noise-embedded orbits
produced by general one-dimensional maps. We relate this bound’s asymptotic behavior to the attractor’s Lyapunov
number and show numerical examples. These results pave the way for more suitable choices for the chaotic signal gen-
erator in some chaotic digital communication systems.
� 2006 Published by Elsevier Ltd.
1. Introduction

Over the last decade many results associated with the application of chaotic signals in digital communication have
appeared (e.g. [1–7] and references therein). In these systems, digital information is mapped directly onto wide-band
chaotic waveforms in lieu of periodic waveforms. Due to their wideband features, such systems spread spectral energy
and potentially mitigate both multipath and jamming effects [4,6,8].

Many systems can generate chaos and it is natural to ask whether a given chaotic signal generator may provide supe-
rior system performance over others. Whereas this question remains unanswered in general, the restricted yet important
class of chaos generating systems based on one-dimensional piece-wise linear maps is among the more commonly used
ones because of its simplicity. In its employment, however, there is very little concern about optimality issues associated
with improving communication performance [2].

To compare generic one-dimensional chaos generating maps, we examine the Cramer-Rao lower bound (CRLB) for
the estimation of the initial condition of chaotic orbits in the presence of additive observation noise. We show that the
CRLB is related to the attractor’s Lyapunov number L that is often used to measure ‘‘chaoticness’’ and whose numer-
ical determination is achievable through a variety of techniques [9].
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Even though the CRLB represents just a performance limit, one must note that it is possible to derive estimators,
such the maximum likelihood one, which attain this limit, being asymptotically unbiased and efficient [10,11].

This paper is organized as follows. In Section 2 we formulate the estimation problem while Section 3 contains the
main theoretical results followed by three numerical illustrations in Section 4. Section 5 contains a brief discussion of
the significance of these results.
2. Problem formulation

Let f(Æ) be a function whose domain and range space is the same set U � R. The difference equation
sðnþ 1Þ ¼ f ðsðnÞÞ; n 2 N; sð0Þ 2 U ð1Þ
defines a discrete time dynamical system or map. Each orbit of this map becomes defined by an initial condition s0, being
denoted as s(n, s0) where
sðn; s0Þ ¼ f nðs0Þ; ð2Þ
with f n(Æ) standing for the nth successive application of f(Æ). An orbit will be symbolized by s(n) whenever s0 is
immaterial.

A sequence of N noise corrupted observations is given by
s0ðnÞ ¼ sðn; s0Þ þ rðnÞ; 0 6 n 6 N � 1; ð3Þ
where r(n) is zero mean Additive White Gaussian Noise (AWGN) of variance r2
r . Our goal is to estimate the initial con-

dition s0.
To simplify notation, consider the vectors
s ¼ ½sð0Þ; sð1Þ; . . . ; sðN � 1Þ�T; ð4Þ
r ¼ ½rð0Þ; rð1Þ; . . . ; rðN � 1Þ�T and ð5Þ
s0 ¼ ½s0ð0Þ; s0ð1Þ; . . . ; s0ðN � 1Þ�T: ð6Þ
The smallest attainable mean square error (mse) of any unbiased estimation method is given by
mseðŝ0ÞP
1

�E o2 ln pðs0 ;s0Þ
os2

0

h i ð7Þ
where p(s 0; s0) is the likelihood function of the observations [12]. The term on the right-hand side of (7) represents the
Cramer-Rao Lower Bound (CRLB) for estimating s0 in (3) [12].

Our main objectives are (a) to deduce an expression for this CRLB and (b) relate this bound to statistical properties
of the attractor, specifically the Lyapunov number L(s0), defined as [13]
Lðs0Þ ¼ lim
N!1

YN�1

n¼0

df
ds
jsðnÞ

����
����

 !1
N

ð8Þ
if this limit exists.
3. CRLB for 1-D map initial condition estimation

Proposition 1 establishes the CRLB for the problem of estimating the initial condition of an orbit as a function of
the derivatives of f(Æ).

Proposition 1. Given the orbit s(n, s0) associated to (1) whose map f(Æ) possesses derivatives at all orbit points, the CRLB for

estimating s0 given s 0(n) and f(Æ), under the conditions represented by (3) is
mseðŝ0ÞP
r2

r

1þ
PN�1

n¼1

Qn�1

j¼0

df
ds jsðj;s0Þ

 !2
: ð9Þ
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Proof. Using the vectors defined in Eqs. (4)–(6) s 0 is given by
s0 ¼ sðs0Þ þ r; ð10Þ
where the dependence on s0 is shown explicitly. As r is composed of jointly independent gaussian random variables, the
probability density function of s 0 is
pðs0; s0Þ ¼
1

ð2pr2
r Þ

N
2

exp � 1

2r2
r

XN�1

n¼0

ðs0ðnÞ � sðn; s0ÞÞ2
" #

; ð11Þ
whose logarithm leads to
o ln pðs0; s0Þ
os0

¼ 1

r2
r

XN�1

n¼0

ðs0ðnÞ � sðn; s0ÞÞ
osðn; s0Þ

os0

; ð12Þ
upon differentiating with respect to s0. Further differentiation, produces
o2 ln pðs0; s0Þ
os2

0

¼ 1

r2
r

XN�1

n¼0

ðs0ðnÞ � sðn; s0ÞÞ
o2sðn; s0Þ

os2
0

� osðn; s0Þ
os0

� �2
" #

; ð13Þ
whose expected value is given by
E
o2 ln pðs0; s0Þ

os2
0

� �
¼ � 1

r2
r

XN�1

n¼0

osðn; s0Þ
os0

� �2

: ð14Þ
To obtain (9), one must write (14) in terms of f(Æ) derivatives. Using the chain rule and (2) one gets
osðn; s0Þ
os0

¼ df n

ds
js0
¼

df
ds jsð0Þ �

df
ds jsð1Þ � � � � �

df
ds jsðn�1Þ; n P 1;

1; n ¼ 0

(
ð15Þ
and substitution of (15) into (14) produces
E
o

2 ln pðs0; s0Þ
os2

0

� �
¼ � 1

r2
r

1þ
XN�1

n¼1

Yn�1

j¼0

df
ds
jsðj;s0Þ

 !2
0
@

1
A; ð16Þ
which finally produces (9) using (7) thereby finishing the proof. h

Note that (9) holds for both chaotic and non-chaotic orbits. In general, the CRLB for the initial condition depends
on the very value s0 being estimated. For chaotic orbits, however, this dependence becomes less pronounced as N grows.
This is a consequence of the tendency of s(n, s0) to roam all over the attractor, the topological transitiveness [14]. This
property appears clearly in the next proposition.

Proposition 2. Under the same conditions as in Proposition 1, the CRLB limit when N!1 is
mseðŝ0ÞP r2
r

L2 � 1

L2N � 1
; ð17Þ
where L � L(s0) 5 1 is the Lyapunov number of the attractor to which the orbit s(n, s0) converges.

Proof. For sufficiently large n, we can use the Lyapunov number defined by Eq. (8) to approximately calculate
osðn; s0Þ
os0

� �2

¼ df
ds
jsð0Þ �

df
ds
jsð1Þ � � � � �

df
ds
jsðn�1Þ

� �2

� L2nðs0Þ: ð18Þ
Therefore,
XN�1

n¼0

osðn; s0Þ
os0

� �2

�
XN�1

n¼0

L2nðs0Þ ¼
L2N ðs0Þ � 1

L2ðs0Þ � 1
ð19Þ
so that Eq. (14) reduces to
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E
o2 ln pðs0; s0Þ

os2
0

� �
� � 1

r2
r

L2N ðs0Þ � 1

L2ðs0Þ � 1
; ð20Þ
for large N.
Therefore, considering that the orbit converges to an attractor whose Lyapunov number is L, substituting (20) into

(7) leads to (17) and the proposition is demonstrated. h

Even for fairly small values of N, (17) represents an approximation to the CRLB for chaotic orbits. This is so
because L is a geometrical mean of the derivatives of the map at the orbit points and can adequately replace the true
product of the derivatives at the first N orbit points. Thanks to the topological transitivity, this simplification yields
reasonably accurate results.

For chaotic orbits, it is important to realize that increasing N implies an exponential decrease in the estimation error
� of s0 (17), but that the uncertainty in computing s(N � 1, s0) is O(max(s(N � 1, s0), �LN�1)) so that even minute esti-
mation errors in s0 are severely amplified in accord with the sensitive dependence that characterizes chaotic dynamics.

Hence, if a chaotic communication system can be built that relies on initial condition estimations, one can profit by
choosing maps with high Lyapunov numbers even though one should not expect precise reconstruction of the whole
orbit from such an estimated s0.

A version of these results for piecewise linear maps was derived in [15]. This problem was also treated in different
ways by [9,11,16]. None of the these works, however, provided general explicit formulae for the CRLB as a function
of the map’s Lyapunov number.
4. Numerical examples

This section examines three illustrative examples starting with the simple case of the tent map followed by the more
general skew tent map family and ending with a quadratic (non-piecewise linear) map.

4.1. The tent map fT(Æ)

This map is defined by
fT ðsÞ ¼ 1� 2jsj; �1 6 s 6 1: ð21Þ
As fT(Æ) is piecewise linear and the absolute value of its derivative is constant, the approximation of (18) becomes exact
for any chaotic orbit of this map whose Lyapunov number is L(s0) = LT = 2 irrespective of s0. Thus (17) holds for all
N > 0 and not just for N!1 and the CRLB
mseðŝ0ÞP r2
r

3

4N � 1
ð22Þ
is independent of s0.
Fig. 1 shows the allied CRLB as a function of N when rr = 1. For comparison, the same plot contains the CRLB for

the estimation of a constant under AWGN [12]. Even for fairly short observation sequences, we obtain low CRLB val-
ues. This translates, in principle, into the possibility of achieving very good initial condition estimates for the chaotic
orbits of this map.
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136 M. Eisencraft, L.A. Baccalá / Chaos, Solitons and Fractals 38 (2008) 132–139
4.2. Skew tent maps fI(Æ)

This family of maps
Fig. 2.
approx
sðnþ 1Þ ¼ fIðsðnÞÞ ¼
2

aþ1
sðnÞ þ 1�a

aþ1
; �1 < sðnÞ < a

2
a�1

sðnÞ � aþ1
a�1

; a 6 sðnÞ < 1

(
ð23Þ
is parameterized by a 2 (�1,1), which determines the x-coordinate of the tent’s peak and the chaotic orbits’ Lyapunov
number [17,18]
LI ¼
2

aþ 1

� �aþ1
2 2

1� a

� �1�a
2

: ð24Þ
The maximum value of LI,LImax = 2, is attained for a = 0 when fI(Æ) reduces to the tent map fT(Æ) of the previous
example.

As opposed to the previous case, the CRLB depends on the initial condition s0 as well as on N and a. Fig. 2 depicts
the CRLB when the initial condition s0 = 0 is estimated as a function of a for several values of N assuming rr = 1. For
each N, two curves are shown: the thick one, obtained via the right hand term of (9), and the dashed one that represents
the right hand term of (17).

Despite the discontinuous appearance of the first one, it is important to note that both curves are deterministic.
Clearly, the inequality of Proposition 2 is a good approximation for the CRLB even for small N.

The smallest values of the CRLB are in the vicinity of a = 0 as expected. Note that this behavior is general and not
due to the particular value of s0 used in plotting the graph and reflects the general qualitative behavior of all s0 values in
the (�1,1) range.

Among the fI(Æ) maps, fT(Æ) is the one with the most favorable CRLB for estimating s0 under AWGN. This property
becomes more significant as more points are used in the estimation.
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Fig. 3. CRLB for initial condition estimation of the orbit s(n, s0) of fI(Æ) as a function of s0 for a = 0.8, rr = 1 and different values of N.
The approximation given by (17) is shown by dashed horizontal lines.
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Fig. 3 shows the CRLB as a function of the estimated s0 for a = 0.8 and rr = 1. The discontinuity of the curves is a
consequence of the discontinuity in the derivative of fI(Æ). Each horizontal segment corresponds to initial conditions
associated with orbits whose N first points are in subintervals where fI(Æ) has identical derivatives, resulting into equal
CRLB values given by (9). As N grows, these segments become smaller and the curves acquire a more complicated
shape.

The same figure contains a dashed approximation to the CRLB as a function of N, (17), which can readily be seen as
a mean of the true CRLB calculated over all initial conditions.

4.3. Quadratic map fQ(Æ)

As a final example, consider the map
sðnþ 1Þ ¼ fQðsðnÞÞ ¼ �2sðnÞ2 þ 1; ð25Þ
whose CRLB as a function of s0 and increasing values of N is contained in Fig. 4 (rr = 1). For N = 3, the CRLB is
strongly dependent on the initial condition. The bound attains the highest values next to the point s0 = 0 where the
derivative of fQ(Æ) is zero and in the vicinity of s0 ¼ �1=

ffiffiffi
2
p

for which fQ(s0) = 0. This is because, next to these points,
orbits need more iterations to split from one another, which makes their initial condition more difficult to estimate. As
N increases, the dependence of the CRLB on s0 becomes more complicated and the observed peaks spread over all the
interval (�1,1).

As for the map fT(Æ), applying Proposition 2 and using the fact that the Lyapunov number of the chaotic orbits of
fQ(Æ) is LQ = 2 [13], we once more obtain (22), whose values are represented using dashed horizontal lines in Fig. 4. This
time, however, this expression is exact only as N!1.
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Fig. 4. CRLB for initial condition estimation of the orbit s(n, s0) of fQ(Æ) as a function of s0 for rr = 1 and different values of N. The
approximation given by (17) is shown using dashed horizontal lines.
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5. Conclusions

Propositions 1 and 2, the main results of this paper, provide the CRLB for the estimation of s0 under AWGN.
Applicable to any one-dimensional map with known derivative, these results furnish a criterion for choosing which

one-dimensional chaotic signal generating map to use when the initial condition needs to be recovered from a finite
corrupted observation sequence. In fact, if one can find an efficient estimator for s0, choosing maps with larger Lyapu-
nov numbers implies that estimates with smaller mean square error are possible.

Another interesting conclusion following (17) is that semi-conjugative maps [14] have the same CRLB performance
for initial condition estimation when N is large because they share the same Lyapunov number. For instance, the qua-
dratic fQ(Æ) and fT(Æ) maps perform identically for large N as LT = LQ = 2. When N is small, however, performance
becomes a function of s0 and more detailed analysis is necessary.

In spite of the fact that these results reflect only performance limits and not actual estimator performances, they
show that the adequate choice of the map may bring benefits for chaotic communication systems specially for those
based on maximum likelihood estimation [17].
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