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Abstract: We derive the Cramér-Rao lower bound associated with the estimation
of the initial condition of noise-embedded chaotic signals produced by general one-
dimensional maps. We relate its asymptotic behaviour to the chaotic attractor’s
Lyapunov number. These results can be used to choose the chaotic generator more
suitable for applications on chaotic digital communication systems.
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1. INTRODUCTION

Over the last decade many results associated
with the application of chaotic signals in digital
communication have appeared, e.g. (Kennedy et
al., 2000; Lau and Tse, 2003) and references
therein. In these systems, digital information is
mapped directly onto wideband chaotic rather
periodic waveforms that play the role of signal
carrier. Because of their wideband features, these
systems effectively spread spectral energy and
thereby potentially mitigate both multipath and
jamming effects (Haykin, 2000).

Chaos generating systems are plentiful and it is
natural to ask whether one given chaotic sig-
nal generator may provide superior performance
over others. Whereas this question remains unan-
swered in general (Lau and Tse, 2003), the re-
stricted, albeit important class of systems using
piece-wise linear maps is the most used to generate
chaos because of its simplicity. In its use, however,
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there is very little concern about the existence
of an optimum chaos generating map that can
improve performance.

To compare such generic one-dimensional chaos
generating maps, we examine the Cramér-Rao
lower bound (CRLB) for the estimation of initial
conditions of chaotic orbits in the presence of
additive observation noise. We relate it to the
system’s Lyapunov number L often used as its
measure of “chaoticness” and whose numerical de-
termination is possible via a variety of techniques
(Abarbanel, 1996).

This paper is organized as follows: in Section 2
we formulate the estimation problem. The main
theoretical results are stated in Section 3 and
they are exemplified in Section 4. A summary
discussion of the significance of the results closes
the paper.

2. PROBLEM FORMULATION

Let f(.) be a function with the same domain
and range space U ⊂ R. The difference equation



s(n + 1) = f(s(n)), n ∈ N, s(0) ∈ U defines a
discrete time dynamical system or map. Each map
orbit (or generated signal) becomes defined for
each initial condition s0 and is denoted by s (n, s0)
where s(n, s0) = fn (s0) with fn(.) being the
n−th successive application of f(.). For simplicity
of notation, an orbit will be symbolized by s(n)
whenever s0 is immaterial.

We seek an estimate of an orbit’s initial condition
s0 from observations

s′(n) = s(n, s0) + r(n), (1)

0 ≤ n ≤ N − 1, where r(n) is gaussian zero mean
white additive noise of variance σ2

r . The minimum
mean square error (the CRLB) of any unbiased
estimation method requires the computation of
(under certain “regularity” conditions)
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where s
′ = [s′(0), s′(1), . . . , s′(N − 1)]

T
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vector of observations. The parameter of interest
θ = s0 is statistically described by the likelihood
function p(s′; θ) (Kay, 1993).

Our objective is to obtain an expression for the
CRLB as a function of statistical properties of the
attractor. For this, it is worth reviewing what the
Lyapunov number of a chaotic attractor is.

If f (·) is differentiable at each orbit point s (n, s0),
the orbit’s Lyapunov number is defined as:
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if the limit in (3) exists. A non-periodic orbit is
chaotic whenever L(s0) > 1 and the larger its
value, the faster is the orbit’s split from other
neighboring orbits with arbitrarily close initial
conditions (Alligood, 1996).

Remark 1. In general, the chaotic orbits of a map
converge to the same chaotic attractor, so the Lya-
punov number of these orbits and of the attractor
become identical (Alligood, 1996) leading to the
common practice of calling this the Lyapunov
number of the map.

3. 1-D MAP INITIAL CONDITION
ESTIMATION CRLB

Theorem 1 establishes the CRLB for the problem
of estimating the initial condition of an orbit as a
function of the derivatives of f(.).

Theorem 1. The CRLB for estimating s0 given r

in (1) and f(.) is given by:

mse(ŝ0) ≥
σ2

r

1 +
∑

N−1
n=1

(

∏n−1
j=0

df
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|s(j)

)2 . (4)

Proof 1. Using the independence among the ran-
dom variables r(n) and (1), it follows that the
likelihood function p(s′; s0) equals

1
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which leads to
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after differentiating its logarithm twice. Comput-
ing the expectation, we obtain
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To arrive in Eq.(4) one must relate the derivatives
of f(.) to those in (7). Using the chain rule and
s(n + 1) = f(s(n)) leads to

∂s(n)

∂s0
=

dfn

ds
|s0

=















n−1
∏

j=0

df

ds
|s(j), n ≥ 1

1, n = 0

. (8)

Substituting (8) into (7) leads to (4) in light of (2)
and proves the theorem.2

Theorem 1 holds for both chaotic or non-chaotic
orbits, so that, in general, the CRLB for initial
condition estimation depends on the very value
s0 being estimated. For chaotic orbits, however,
this dependence becomes less pronounced when
N grows as s (n, s0) tends to roam all over the
attractor. This property is called topological tran-

sitiveness (Devaney, 2003) and appears clearly in
the next result.

Theorem 2. Under the same conditions of Theo-
rem 1 and considering an orbit s (n, s0) the CRLB
is given by:

mse(ŝ0) ≥ σ2
r

L2 − 1

L2N − 1
, (9)

when N → ∞ where L 6= 1 is the Lyapunov num-
ber of the attractor for which the orbit s (n, s0)
converges.

Proof 2. For sufficiently large n, we can use the
Lyapunov number definition (3) to approximately
calculate

(
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2

≈ L2n (s0) . (10)



Thus, from (8) and from the fact that L (s0) 6= 1,

N−1
∑

n=0

(

∂s(n)

∂s0

)2

≈

N−1
∑

n=0

L2n (s0) =
L2N (s0) − 1

L2 (s0) − 1

(11)
for N sufficiently large.

Hence as the orbit converges to an attractor whose
Lyapunov number is L, (7) and (2) lead to (9)
demonstrating the theorem.2

Even for small values of N , (9) can be used as
an approximation to the CRLB for chaotic orbits.
This is so because L, is a geometrical mean of
the derivatives of the map at the orbit points
that replaces the true product of the derivatives
at the first N points of the orbit. Due to the
topological transitivity, this simplification leads to
good results.

Furthermore (9) implies that the estimation error
decreases exponentially with N . This result ex-
poses quantitatively how the Lyapunov number of
the attractor influences initial condition estimate
error limits for large N . The larger L, the smaller
the mininum mse of this estimator.

Sensitive dependence on initial conditions is char-
acteristic of chaotic orbits. Thus an estimation
error ǫ, implies that the error in computing
s(N − 1) from the estimated value ŝ0 and f(·)
is O

(

max
(

s(N − 1), ǫLN−1
))

. Hence, even if the
initial condition estimate is relatively precise this
does not imply a precise reconstruction of the
orbit generated by s0.

A version of these theorems for piecewise linear
maps was derived in (Papadopoulos and Wornell,
1993). This problem is also treated in different
ways by (Abarbanel, 1996; Kay, 1995; Kay and
Nagesha, 1995), yet none of these works provided
general explicit formulae for the CRLB as a func-
tion of the map’s Lyapunov number.

4. NUMERICAL EXAMPLE

In this section, we apply our results to the family
of skew tent maps s(n + 1) = fI(s(n)) defined by

s(n+1) =



















2

α + 1
s(n) +

1 − α

α + 1
, −1 < s(n) < α

2

α − 1
s(n) −

α + 1

α − 1
, α ≤ s(n) < 1

(12)
where {α, s0} ⊂ (−1, 1). This map is shown in
Figure 1a.

It can be shown (Kisel et al., 2001) that the
Lyapunov number of a map of this family is given
by:
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Fig. 1. (a) Skew tent map fI(s) and (b) its
Lyapunov number as a function of α.
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α+1

2
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2

. (13)

Figure 1b shows how the Lyapunov number LI

varies as a function of α.

The initial condition CRLB for s0 = 0 is shown
in Figure 2 as function of α for σr = 1 and
different values of N . For each N two curves are
plotted: a continuous one obtained via (4) and a
dashed one obtained via the approximation (9).
It is clear from these curves that (9) is really a
good approximation for the CRLB even for small
values of N , as stated.
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Fig. 2. CRLB on the estimation of the initial
condition of the orbit sn(0) of fI(.) as a
function of α.

The smallest values of the CRLB, independently
from the number of points used in the estimation,
are in the vicinity of α = 0, which provides the
largest LI , as suggested by Figure 1b. We have
obtained similar curves for other values of s0.

When it comes to estimating the initial condition
of an orbit, these results categorically indicate
that, among the maps fI(.), the best performance



is reached by the tent map fT (.) obtained when
α = 0,

fT (s) = 1 − 2|s|. (14)

To verify our results we have implemented a
maximum likelihood estimator (MLE) ŝ0 (based
on the one in (Papadopoulos and Wornell, 1993))
for the tent map fT (.).

A known property of the MLE is its asymptot-
ically unbiased and efficient character, i.e. the
CRLB is reached for N sufficiently large (Kay,
1993).

To measure the MLE algorithm’s performance,
consider the estimation gain defined by

G =
σ2

r

mse (ŝ(0))
=

E
[

(s′(0) − s(0))
2
]

E
[

(ŝ(0) − s(0))
2
] . (15)

Since the MLE is asymptotically unbiased, using
L = 2, in (9) reduces it to

mse(ŝ0) ≥ σ2
r

3

4N − 1
(16)

and

G ≤
4N − 1

3
. (17)

The algorithm was tested for different N as a
function of the signal-to-noise ratio:

SNRin =

∑N−1
n=0 s(n)2

Nσ2
r

, (18)

and the results are shown in Figure 3.

For each N value, two curves were plotted: a con-
tinuous one showing algorithm gain and a dashed
one for (17) thereby confirming the validity of the
theoretical limit.
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Fig. 3. Estimation gain of the MLE for the initial
condition of the tent map fT (.).

5. CONCLUSIONS

Theorems 1 and 2 are the main results of this
paper and provide the CRLB for the estimation
of s0 under AWGN, leading, in principle, to a
criterion for choosing which one-dimensional map
might be best suited for chaotic communication
system applications. The larger the Lyapunov
number of a map, the smaller the CRLB of its
efficient initial condition estimator and hence, the
better its estimates. We stress that these theorems
can be applied to any one-dimensional map with
known derivative.

Another interesting conclusion from (9) is that
semi-conjugative maps (Devaney, 2003) have the
same CRLB performance for initial conditions for
large N because they share the same Lyapunov
number. For instance, the quadratic map fQ(s) =
−2s2 + 1 for s ∈ [−1, 1] and fT (s) perform
identically for large N as LT = LQ = 2. When N

is small, however, performance becomes a function
of s0 and more detailed analysis is necessary.

It possible to envision chaotic communication sys-
tems based on the estimation of the initial con-
dition, either as an aid to detecting the trans-
mitted information or for improving SNR prior
to detection. For example, a very simple idea is
to use N points of a tent map to transmit a
binary symbol so that the information is coded
by the initial condition using a randomly selected
positive initial condition to transmit one symbol
and a randomly selected negative one to transmit
the other symbol. Systems like this are currently
under research.
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