Proceeding Series of the Brazilian Society of Computational and Applied Mathematics

Análise Espectral de Sinais Caóticos Gerados pelo Mapa de Bernoulli com r Segmentos

Rafael Alves da Costa¹, Murilo Bellezoni Loiola²

Centro de Engenharia, Modelagem e Ciências Sociais, UFABC, Santo André, SP Marcio Eisencraft³

Escola Politécnica da Universidade de São Paulo, São Paulo, SP

Resumo. Nas últimas décadas, diversas aplicações práticas de sinais caóticos em comunicação têm sido consideradas. Para tanto, é de fundamental importância conhecer e controlar as características temporais e espectrais desses sinais. No presente texto, faz-se um estudo analítico da sequência de autocorrelação e da densidade espectral de potência de sinais caóticos em tempo discreto gerados pelo mapa de Bernoulli com r segmentos.

Palavras-chave. Caos, Comunicação com Caos, Analise Espectral, Banda Essencial

1 Introdução

Um sinal caótico é limitado em amplitude, aperiódico, determinístico e apresenta dependência sensível às condições iniciais [1]. Esta última característica implica que duas condições iniciais próximas geram sinais que se tornam distintos depois de algumas iterações [1]. Atualmente existe um grande número de áreas desenvolvendo pesquisas envolvendo sinais caóticos. Em particular, na Engenharia de Telecomunicações vêm surgindo numerosas possibilidades de aplicações em modulações analógica e digital, codificação e criptografia, entre outras áreas [2,4,10].

No projeto de sistemas de comunicação é fundamental conhecer a Sequência de Autocorrelação (SAC), a Densidade Espectral de Potência (DEP) e a banda essencial dos sinais envolvidos. Nos últimos anos houve algum progresso na determinação da DEP de sinais caóticos gerados por algumas famílias de mapas [3, 5, 6], porém, resultados mais gerais ainda precisam ser encontrados.

Portanto, neste contexto, o objetivo deste artigo é generalizar resultados obtidos previamente, determinando-se fórmulas fechadas para a DEP de mapas unidimensionais lineares por partes com r inclinações distintas e analisar o caso em que as inclinações são iguais.

O artigo é estruturado da seguinte forma: na Seção 2 define-se o mapa estudado e na Seção 3 deduzem-se a SAC, a DEP e a banda essencial. Na Seção 4, particularizam-se os

 $^{^{1}}$ r.costa@ufabc.edu.br

 $^{^2} murilo.loiola @ufabc.edu.br\\$

³marcio@lcs.poli.usp.br

resultados para o caso em que as inclinações são iguais. Para esse caso em particular, são mostradas simulações que validam os resultados teóricos. Por fim, na Seção 5 tecem-se conclusões.

2 O Mapa de Bernoulli com r segmentos

O mapa de Bernoulli com $r \ge 2$ segmentos $f_B(\cdot)$, é composto por r trechos lineares, com inclinações positivas [1]. As abscissas dos pontos de descontinuidade $\alpha_1, \alpha_2, \dots, \alpha_{r-1}$ são os parâmetros que definem o mapa na família.

O mapa $f_B(\cdot)$, definido no intervalo U = [-1, 1] é dado por

$$s(n+1) = f_B(s(n)),$$
 (1)

em que

$$f_B(s) = \frac{2s - (\alpha_j + \alpha_{j-1})}{\alpha_j - \alpha_{j-1}}, \quad \alpha_{j-1} \le s < \alpha_j, \tag{2}$$

sendo $\alpha_0 = -1, \, \alpha_r = 1 \in \alpha_j \in (-1, 1), \, j = 1, \dots, r.$

Na Figura 1(a) é mostrado um exemplo de $f_B(\cdot)$ com r = 7 e $\alpha_1 = -0.5$, $\alpha_2 = -0.3$, $\alpha_3 = -0.1$, $\alpha_4 = 0.2$, $\alpha_5 = 0.7$ e $\alpha_6 = 0.8$. Na Figura 1(b) dois trechos de sinal desse mapa com condições iniciais muito próximas, s(0) = 0.3 e s(0) = 0.300000001 são mostrados. Observa-se que o sinal é aperiódico e apresenta Dependência Sensível às Condições Iniciais (DSCI).

Figura 1: (a) Exemplo de $f_B(\cdot)$ com r = 7 (b) trecho de órbitas desse mapa com s(0) = 0.3 (linha contínua) e s(0) = 0.300000001 (linha tracejada).

A densidade invariante das órbitas de $f_B(\cdot)$ pode ser obtida pela iteração do operador de Frobenius-Perron $\mathcal{P}(\cdot)$ [7] aplicado a uma densidade inicial qualquer p(s). Sendo s_1 , s_2, \ldots, s_r as contra-imagens de um ponto s, como mostrado na Figura 2,

$$\mathcal{P}(p(s)) = \frac{d}{ds} \int_{f^{-1}([-1,s])} p(u) du = \frac{1}{2} \left[(\alpha_1 + 1) \, p(s_1) + (\alpha_2 - \alpha_1) \, p(s_2) + \ldots + (1 - \alpha_{r-1}) \, p(s_r) \right].$$
(3)

Note que para $p(s) = \frac{1}{2}$, $\mathcal{P}(p(s)) = \frac{1}{2} \left[(\alpha_1 + 1) \frac{1}{2} + \dots + (1 - \alpha_{r-1}) \frac{1}{2} \right] = \frac{1}{2}$. Assim, a densidade invariante para o mapa $f_B(\cdot)$ é uniforme e dada por

$$p_*(s) = \frac{1}{2}, \text{ para} - 1 \le s \le 1.$$
 (4)

Figura 2: A contra-imagem do intervalo [-1, s] da família de mapas de Bernoulli com r inclinações é dada por $[-1, s_1] \cup [\alpha_1, s_2] \cup \cdots \cup [\alpha_{r-2}, s_{r-1}] \cup [\alpha_{r-1}, s_r]$.

O fato da densidade invariante ser uniforme facilita os cálculos da SAC e da DEP, como é discutido nas seções subsequentes.

A potência média das orbitas geradas por $f_B(\cdot)$ é

$$P_m = E\left[s^2\right] = \int_{-1}^1 s^2 p_*(s) ds = \frac{1}{2} \int_{-1}^1 s^2 ds = \frac{1}{3}.$$
(5)

3 Sequência de Autocorrelação e Densidade Espectral de Potência

Sinais caóticos gerados por mapas podem ser tratados como funções amostras de um processo estocástico ergódico [7]. Para um conjunto fixo de parâmetros, o sinal caótico gerado pelo mapa a partir de uma condição inicial s(0) pode ser interpretado como uma função amostra de um processo estocástico definido por $f_B(\cdot)$. Utilizando-se essa interpretação, deduz-se a seguir a SAC utilizando-se uma técnica similar à empregada em [11].

A SAC R(k) do sinal s(n) para um atraso k é definida por

$$R(k) = E[s(n)s(n+k)].$$
(6)

A esperança matemática $E[\cdot]$ é tomada sobre todas as condições iniciais que geram sinais caóticos. Para facilitar a notação define-se x = s(n) e $y = s(n+k) = f_B^k(x)$.

Assim, a densidade conjunta p(x, y) é dada por $p(x, y) = p_*(x)\delta(y - f_B^k(x))$, em que $p_*(\cdot)$ é dada por (4) e $\delta(\cdot)$ representa a função delta de Dirac. Desta forma, como U = [-1, 1], usando (6) e (4), tem-se para os mapas $f_B(\cdot)$

$$R(k) = E[s(n)s(n+k)] = E[xy] = \int_{-1}^{1} \int_{-1}^{1} xyp_*(x)\delta\left(y - f_B^k(x)\right)dxdy = \frac{1}{2} \int_{-1}^{1} xf_B^k(x)dx.$$
 (7)

A imagem de cada um dos r segmentos que formam o mapa $f_B(\cdot)$ é igual ao domínio U do mapa. Assim, o gráfico $f_B^k(\cdot)$ consiste de r^k segmentos. Na Figura 3(a), tem-se o

mapa $f_B(x)$. Na Figura 3(b) é apresentado o gráfico de $f_B^2(x)$ e na Figura 3(c) é mostrado um trecho do gráfico de $f_B^k(x)$ para um k genérico. Representa-se a m-ésima solução da equação $f_B^k(x) = 1$ por $a_k(m)$, em que $1 \le m \le r^{k-1}$.

Figura 3: (a) $f_B(x)$ (b) $f_B^2(x)$ e (c) $f_B^k(x)$.

O segmento que passa por $(a_k(m-1), -1) \in (a_k(m), 1)$ pode ser equacionado como

$$y = \frac{2x - (a_k(m) + a_k(m-1))}{a_k(m) - a_k(m-1)}.$$
(8)

Substituindo-se (8) em (7) obtém-se

$$R(k) = \frac{1}{2} \sum_{m=1}^{r^{k-1}} \left[\int_{a_k(m-1)}^{a_k(m)} \left(\frac{2x^2 - (a_k(m) + a_k(m-1))x}{(a_k(m) - a_k(m-1))} \right) dx \right].$$
(9)

Resolvendo-se a integral tem-se

$$R(k) = \frac{1}{12} \sum_{m=1}^{r^{k-1}} \left[(a_k(m) - a_k(m-1))^2 \right].$$
 (10)

Calculando-se R(k+1) a partir de (10), obtém-se

$$R(k+1) = \frac{1}{12} \sum_{m=1}^{r^k} \left[(a_{k+1}(m) - a_{k+1}(m-1))^2 \right].$$
 (11)

Ao iterar uma vez o mapa, passa-se de $f_B^k(x)$ para $f_B^{k+1}(x)$, cuja a generalização pode ser feita a partir das Figuras 4(a) e 4(b), em que $w_{m,1}, w_{m,2}, \ldots \in w_{m,r-1}$ são as raízes das equações $f_B^k(x) = \alpha_1, f_B^k(x) = \alpha_2, \ldots \in f_B^k(x) = \alpha_{r-1}$ no intervalo $[a_k(m-1), a_k(m)]$, respectivamente.

Para determinar $w_{m,1}, w_{m,2}, \ldots \in w_{m,r-1}$ substitui-se y por $\alpha_1, \alpha_2, \ldots \in \alpha_{r-1} \in x$ por $w_{m,1}, w_{m,2}, \ldots \in w_{m,r-1} \in (8)$. Desta forma, tem-se

$$w_{m,j} = \frac{(a_k(m) - a_k(m-1))\alpha_j + (a_k(m) + a_k(m-1))}{2}.$$
(12)

Figura 4: (a) Trecho do mapa genérico $f^k_B(x)$ e (b) trecho desse mapa após uma iteração $f^{k+1}_B(x)$.

Relacionando-se os gráficos da Figura 4, observa-se que $a_{k+1}(rm - r) = a_k(m - 1), a_{k+1}(rm - r + 1) = w_{m,1}, \ldots = \ldots, a_{k+1}(rm) = a_k(m).$

Pelas relações inferidas da Figura 4 e pela expressão (12) obtêm-se

$$R(k+1) = \frac{\psi}{12} \sum_{m=1}^{r^{k-1}} \left[\left(a_k(m) - a_k(m-1) \right)^2 \right],$$
(13)

em que $\psi = \frac{1}{2} \sum_{j=0}^{r-1} \left(\alpha_j^2 - \alpha_j \alpha_{j+1} \right).$

Comparando (10) e (13), observa-se que $R(k+1) = \psi R(k)$. Resolvendo-se esta equação diferenças com a condição inicial dada em (5), obtém-se

$$R(k) = \frac{1}{3}\psi^{|k|}.$$
(14)

A DEP $P(\omega)$ é obtida calculando-se a Transformada de Fourier de Tempo Discreto (TFTD) de R(k), considerando-se k a variável temporal [9]. Assim, a DEP de $f_B(\cdot)$, é dada por

$$P(\omega) = \frac{1 - \psi^2}{3(1 + \psi^2 - 2\psi\cos(\omega))}.$$
(15)

A banda essencial B é definida como o comprimento do intervalo de frequência em que q = 95% da potência do sinal está concentrada [8]. Calculando-se a banda essencial B utilizando-se o mesmo procedimento utilizado em [5] obtém-se

$$B = 2 \arctan\left[\tan\left(\frac{q\pi}{2}\right) \left| \frac{\psi - 1}{\psi + 1} \right| \right].$$
(16)

Na seção seguinte exemplificam-se esses resultados para o caso r inclinações iguais.

4 Caso r inclinações iguais

Nesse caso, os segmentos que separam os parâmetros no domínio U possuem mesmo comprimento. Dessa forma, $\alpha_k = -1 + \frac{2}{r}k$, em que k = 0, 1, ...r. Nesse caso, $\psi = \frac{1}{r}$.

Assim, a SAC é $R(k) = \frac{1}{3} \left(\frac{1}{r}\right)^{|k|}$, a DEP $P(\omega) = \frac{r^2 - 1}{3(1 + r^2 - 2r\cos(\omega))}$ e a banda essencial $B = 2 \arctan\left[\tan\left(\frac{q\pi}{2}\right) \left|\frac{1 - r}{1 + r}\right|\right]$.

Na Figura 5(a) é ilustrada a SAC para $f_B(\cdot)$ para alguns valores de r. Observa-se que para $r \ge 2$, R(k) decai monotonicamente com |k|. Conforme aumenta-se o valor r, a SAC aproxima-se da forma impulsiva. Para cada curva teórica, é mostrado em tracejado o resultado obtido numericamente utilizando-se 500 funções-amostras com condições iniciais s(0) uniformemente distribuídas no domínio U, cada uma com N = 1000 pontos. Claramente, os resultados numéricos validam os resultados teóricos obtidos. Na Figura 5(b) são ilustradas as curvas analíticas da DEP e estimativas da DEP obtida numericamente. Nota-se que com r suficientemente grande a DEP resultante aproxima-se de um espectro plano. Na Figura 6(a) é mostrado o gráfico de B em função de r e na Figura 6(b) em função do expoente de Lyapunov $h_B = \ln(r)$. Na simulação, utiliza-se r = 2 até r = 50com $r \in \mathbb{N}$. Observa-se que conforme aumenta-se r aumenta-se também a distribuição espectral da potência.

Figura 5: SAC e DEP para sinais do mapa $f_B(\cdot)$ para alguns valores de r. Curvas analíticas (linha tracejada) e curvas numérica (linha continua).

Figura 6: Banda essencial em função de (a) de $r \in (b)$ do expoente de Lyapunov.

5 Conclusões

Para aplicações práticas na área de Telecomunicações é fundamental conhecer e controlar as características espectrais dos sinais envolvidos. Nesse artigo, deduziram-se a SAC, a DEP e a banda essencial para as órbitas do mapa de Bernoulli com r inclinações. Analisou-se o caso r inclinações iguais analítica e numericamente. Esses resultados podem ser úteis no projeto e implementação de sistemas de comunicação baseados em caos que venham a utilizar esses mapas. No momento, os autores estão trabalhando nesse aspecto.

Agradecimentos

ME gostaria de agradecer ao suporte financeiro do CNPq, processos 479901/2013-9 e 311575/2013-7 e da FAPESP, processo 2014/04864-2. MBL gostaria de agradecer ao suporte financeiro da FAPESP processo 2013/25977-7.

Referências

- K. Alligood, T. Sauer, and J. Yorke. *Chaos: An Introduction to Dynamical Systems*. Textbooks in Mathematical Sciences. Springer, 1997.
- [2] M. Baptista. Cryptography with chaos. Physics Letters A, 240:50 54, 1998.
- [3] R. A. da Costa, M. B. Loiola, and M. Eisencraft. Spectral properties of chaotic signals generated by the bernoulli map. *Journal of Engineering Science and Technology Review*, 8(2):12–16, 2015.
- [4] M. Eisencraft, R. R. F. Attux, and R. Suyama, editors. Chaotic Signals in Digital Communications. CRC Press, Inc., 2013.
- [5] M. Eisencraft, D. M. Kato, and L. H. A. Monteiro. Spectral properties of chaotic signals generated by the skew tent map. *Signal Processing*, 90(1):385–390, 2010.
- [6] K. Feltekh, D. Fournier-Prunaret, and S. Belghith. Analytical expressions for power spectral density issued from one-dimensional continuous piecewise linear maps with three slopes. *Signal Processing*, 94(0):149 – 157, 2014.
- [7] A. Lasota and M. MacKey. Probabilistic properties of deterministic systems. Cambridge University Press, 1985.
- [8] B. P. Lathi. Modern Digital and Analog Communication Systems. Oxford University Press, Inc., New York, NY, USA, 4.ed edition, 2009.
- [9] A. V. Oppenheim and R. W. Schafer. Discrete-Time Signal Processing. Prentice Hall Press, Upper Saddle River, NJ, USA, 3rd edition, 2009.
- [10] H.-P. Ren, M. S. Baptista, and C. Grebogi. Wireless communication with chaos. *Phys. Rev. Lett.*, 110:184101, Apr 2013.
- [11] H. Sakai and H. Tokumaru. Autocorrelations of a certain chaos. Acoustics, Speech and Signal Processing, IEEE Transactions on, 28(5):588–590, Oct. 1980.