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Abstract—The electroencephalogram (EEG) is a complex 

and aperiodic time series, which is a sum over a very large 

number of neuronal membrane potentials. Despite the rapid 

advances of neuroimaging techniques, EEG recording con-

tinues playing an important role in both the diagnosis of 

neurological diseases and understanding of the psychological 

process. In order to extract relevant information of brain 

electrical activity, a variety of computerized-analysis me-

thods have been used. In this paper, we propose the use of a 

recently developed machine-leaning technique – relevance 

vector machine (RVM) – for EEG signals classification. 

RVM is based on Bayesian estimation theory, which has as 

distinctive feature the fact that it can yield a sparse decision 

function defined only by a very small number of so-called re-

levance vectors. From the experimental results, we can see 

that estimation and classification based on RVM perform 

well in EEG signals classification problem compared with 

traditional approach support vector machine (SVM), which 

indicates that this classification method is valid and has 

promising application. 

 
Keywords - Electroencephalogram, Support Vector Ma-

chine, Relevance Vector Machine, Bayesian estimation 

theory, classification problem 

 

I. INTRODUCTION 

The human brain is a complex system, and exhibits rich 
spatiotemporal dynamics. Among the techniques for in-
vestigating human brain dynamics, electroencephalogra-
phy (EEG) provides a non-invasive and direct measure of 
cortical activity with temporal resolution in milliseconds. 
EEG is a record of the electrical potentials generated by 
the cerebral cortical neurons. Early on, EEG analysis was 
restricted to visual inspection of EEG records. Since there 
is no definite criterion evaluated by the experts, visual 
analysis of EEG signals is insufficient. Routine clinical 
diagnosis requires the analysis of EEG signals. Therefore, 
some automation and computer techniques have been 
used for this aim [5]. Since the early days of automatic 
EEG processing, representations based on a Fourier trans-
form have been most commonly applied. This approach is 
based on earlier observations that the EEG spectrum con-
tains some characteristic waveforms that fall primarily 
within four primary components. Such methods have 
proved beneficial for various EEG characterizations, but 
fast Fourier transform (FFT), suffers from large noise 
sensitivity. Parametric power spectrum estimation me-
thods such as AR, reduces the spectral loss problems and  
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gives better frequency resolution. Also AR method has an 
advantage over FFT that, it needs shorter duration data 
records than FFT [20].  

In the late 1890s, a powerful method was proposed to 
perform time-scale analysis of signals: the wavelet trans-
forms (WT). This method provides a unified framework 
for different techniques that have been developed for var-
ious applications. Since the WT is appropriate for analysis 
of non-stationary signals and this represents a major ad-
vantage over spectral analysis, it is well suited to locating 
transient events. Wavelet’s feature extraction and repre-
sentation properties can be used to analyze various tran-
sient events in biological signals. In [1] was presented an 
overview of the discrete wavelet transform (DWT) devel-
oped for recognizing and quantifying spikes, sharp waves 
and spike-waves. Through, wavelet decomposition of the 
EEG records, transient features are accurately captured 
and localized in both time and frequency context.  

Various other techniques from the theory of signal ana-
lyses have been used to obtain representations and extract 
the features of interest for classification purposes. Neural 
networks and statistical pattern recognition methods have 
been applied to EEG analysis. In [11] was used the raw 
EEG data as an input to a neural network while in [19] 
was used the features proposed by Gotman with an adap-
tive structure neural network, but his results show a poor 
false detection rate. In [10] a recurrent neural network 
combined with wavelet pre-processing was proposed to 
predict the onset of epileptic seizures both on scalp and 
intracranial recordings only one-channel of electroence-
phalogram.  

However, most of the techniques used to train the neu-
ral network classifiers are based on the idea of minimi-
zing the training error, which is usually called empirical 
risk. As a result, limited amounts of training data and over 
high training accuracy often lead to over training instead 
of good classification performance. In addition, its classi-
fication accuracy is also sensitive to the dimension of the 
training set.  

On the other hand, the Support Vector Machine (SVM) 
approach is based on the minimization of the structural 
risk [18], which asserts that the generalization error is de-
limited by the sum of the training error and a parcel that 
depends on the Vapnik-Chervonenkis dimension. By mi-
nimizing this summation, high generalization perfor-
mance may be obtained. Besides, the number of free pa-
rameters in SVM does not explicitly depend upon the in-
put dimensionality of the problem at hand. Another im-
portant feature of the support vector learning approach is 
that the underlying optimization problems are inherently 
convex and have no local minima, which comes as the re-
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sult of applying Mercer's conditions on the characteriza-
tion of kernels [13]. 

Although the SVM classification provides successful 
results, a number of significant and practical disadvantag-
es are identified as follows [15][16]: 
• Although SVMs are relatively sparse, the number of 

support vector (SVs) typically grows linearly with the 
size of the training set and therefore, SVMs make 
unnecessarily liberal of basic functions. 

• Predictions are not probabilistic, and therefore, SVM 
is not suitable for classification tasks in which post-
erior probabilities of class membership are necessary. 

• In SVM, it is required to estimate the error/margin 
trade tradeoff parameter C, which generally entails a 
cross-validation procedure which can be a waste of 
data as well as computation. 

• In SVM, the kernel function must satisfy Mercer’ 
condition, hence, it must be a continuous symmetric 
kernel of a positive integral operator. 

The Relevance Vector Machine (RVM) has been intro-
duced by [15][16] as a Bayesian treatment alternative to 
the SVM that does not suffer from the aforementioned li-
mitations. The RVM is a statistical learning method and it 
is a probabilistic sparse kernel model identical in func-
tional form to the SVM. It represents a new approach to 
pattern classification that has recently attracted a great 
deal of interest in the machine learning community. RVM 
can be seen as a new way to train polynomial, neural net-
work, or Radial Basic Functions classifiers. It operates on 
the induction principle of structural risk minimization, 
which minimizes an upper bound on the generalization er-
ror. Because in this approach no probability density is es-
timated, it becomes highly insensitive to the curse of di-
mensionality. In many problems RVM classifiers have 
been shown to perform much better than other non-linear 
classifiers such as artificial neural networks. However, 
their application to EEG signals classification problem 
has been very limited.  

In this paper, we propose the use of RVM for EEG sig-
nals classification. Furthermore, a comparative study in 
terms of performance and complexity (number of relev-
ance vectors versus number support vectors) is realized. 
As in traditional pattern-recognition systems, our ap-
proach consists of two main modules: a feature extractor 
based on DWT that generate a feature vector from the 
EEG signals and feature classifier that output the class 
based on the features vector.  

In the next section we describe the data analyzed and 
the techniques used to preprocess it. In Section 3 we 
present the classifiers implement using the SVM and 
RVM; in Section 4 we show the results of the classifica-
tions and the accuracy rate; and then in Section 5 we con-
clude the study. 

II. DATA ANALYSIS 

A. Data selection 

In this work, we have used the EEG data publicly avai-
lable at (http://www.meb.uni-bonn.de/epileptologie/science/ 

physik/eegdata.html [2]. The complete data set consists of 
five sets (denoted A-E) each containing 100 single-
channel EEG segments. These segments were selected 
and cut out from continuous multi-channel EEG record-
ings after visual inspection for artifacts, e.g., due to mus-
cle activity or eye movements. Sets A and B consisted of 
segments taken from surface EEG recordings that were 
carried out on five healthy volunteers using a standardized 
electrode placement scheme (Figure 1). 

 

 
Figure 1: The 10-20 international system of electrode 
placement c images of normal and abnormal cases. 

 
Volunteers were relaxed in an awake-state with eyes 

open (A) and eyes closed (B), respectively. Sets C, D, and 
E originated from EEG archive of pre-surgical diagnosis. 
EEGs from five patients were selected, all of whom had 
achieved complete seizure control after resection of one 
of the hippocampal formations, which was therefore cor-
rectly diagnosed to be the epileptogenic zone. Segments 
in set D were recorded from within the epileptogenic 
zone, and those in set C from the hippocampal formation 
of the opposite hemisphere of the brain. While sets C and 
D contained only activity measured during seizure free in-
tervals, set E only contained seizure activity. Here seg-
ments were selected from all recording sites exhibiting ic-
tal activity. All EEG signals were recorded with the same 
128-channel amplifier system, using an average common 
reference. The data were digitized at 173.61 samples per 
second using 12 bit resolution. Bandpass filter settings 
were 0.53-40 Hz (12dB/oct). In this work, like in [14], we 
used two sets (A and E). 

B.  Data preprocessing 

Wavelet transform is a spectral estimation technique in 
which any general function can be expressed as an infinite 
series of wavelets. The basic idea underlying wavelet 
analysis consists of expressing a signal as a linear combi-
nation of a particular set of functions (WT), obtained by 
shifting and dilating one single function called a mother 
wavelet. The decomposition of the signal leads to a set of 
coefficients called wavelet coefficients. Therefore the 
signal can be reconstructed as a linear combination of the 
wavelet functions weighted by the wavelet coefficients. In 
order to obtain an exact reconstruction of the signal, ade-
quate number of coefficients must be computed. The key 
feature of wavelets is the time-frequency localization. It 
means that most of the energy of the wavelet is restricted 
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to a finite time interval. Frequency localization means that 
the Fourier transform is band limited. When compared to 
FFT, the advantage of time-frequency localization is that 
wavelet analysis varies the time-frequency aspect ratio, 
producing good frequency localization at low frequencies 
(long time windows), and good time localization at high 
frequencies (short time windows). This produces a seg-
mentation, or tiling of the time-frequency plane that is ap-
propriate for most physical signals, especially those of a 
transient nature. The wavelet technique applied to the 
EEG signal will reveal features related to the transient na-
ture of the signal which are not obvious by the Fourier 
transform [6].  

Selection of suitable wavelet and the number of de-
composition levels is very important in analysis of signals 
using the DWT. The number of decomposition levels is 
chosen based on the dominant frequency components of 
the signal. The levels are chosen such that those parts of 
the signal that correlate well with the frequencies neces-
sary for classification of the signal are retained in the 
wavelet coefficients. In the present study, since the EEG 
signals do not have any useful frequency components 
above 30 Hz, the number of decomposition levels was 
chosen to be 5. Thus, the EEG signals were decomposed 
into details D1-D5 and one final approximation, A5 [14].  

We have used a Daubechies order-4 wavelet (db4), its 
smoothing feature made it more appropriated to detect 
changes of EEG signal [14]. 

C. Feature Extraction 

In order to reduce the dimensionality of the extracted 
features vector [4][14][17][12], statistics over the set of 
the wavelet coefficients were used to generate the input to 
the SVM: 

Statistics over wavelet coefficients obtained: 
• Average of wavelet coefficients in each sub-band 

(W_Avg). 
• Standard deviation of wavelet coefficients in each 

sub-band (W_Std). 
• Maximum of wavelet coefficients in each sub-band 

(W_Max). 

III. VARIANTS OF SUPPORT VECTOR MACHINES 

In this section we revise the use of SVM and RVM in 
classification problems.  

A.  Standard SVM 

Let the training set be N
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For the training samples along the decision boundary, 
the corresponding s

i
'α  are greater than zero, as ascer-

tained by the Kuhn-Tucker Theorem [13].These samples 
are known as support vectors. The number of support vec-
tors is generally much smaller than N, being proportional 
to the generalization error of the classifier [18]. A test 
vector mℜ∈x  is then assigned to a given class with re-
spect to the expression 
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B. Relevance Vector Machine 

The RVM introduces a priori over the model weights 
governed by a set of hyper-parameters, in a probabilistic 
framework. One hyperparameter is associated with each 
weight, and the most probable values are iteratively esti-
mated from the training data. The most compelling fea-
ture of the RVM is that it typically utilizes significantly 
fewer kernel function compared to the SVM, while pro-
viding a similar performance.  

For two-class classification, any target can be classified 
into two class such that t�{0,1}. A Bernoulli distribution 
can be adopted for �(
|�) in the probabilistic framework 
because only two classes (0 and 1) are possible. The lo-
gistic sigmoid link function σ(y� = 1 (1 + exp (−���⁄  is 
applied to y(x) to link random and systematic components, 
and generalize the linear model. Following the definition 
of the Bernoulli distribution, the likelihood is written as 

�(
|�� = � �{�(��; ��}��
 

�!"
(1 − �{�(��; ��}�"#�� (5) 

for the targets 
� ∈ {0,1}. 
The likelihood is complementary by a prior over the pa-
rameter (weights) in the form of 

�(
|�� = � $%&
√2) exp *− %&+&,2 -

 

�!"
 (6) 

where . = (%", %,, ⋯ , %��0 shows the hyperparameter in-
troduced to control the strength of the priori over its asso-
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ciated weight. Hence, the prior is Gaussian, but condi-
tioned on .. 
For a certain . value, the posterior weight distribution 
conditioned on the data can be obtained using Bayes’ rule, 
i. e, 

�(�|
, .� = �(
|���(�|.��(
|.�  (7) 

where p(t|w) is likelihood of t, p(w| 2� is the prior density 
of w, and p(t| 2� is referred to as evidence. 

The weight cannot be analytically obtained, and there-
fore, a Laplacian approximation procedure is used [8]. 
1) Since p(w|t,αααα) is linearly proportional to �(
|�� ×�(�, .�, it is possible to aim to find the maximum of  

log{�(
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for the most probable weight �>?, with �� = �{�(��; ��} 
and @ = ABC;(%D, %", ⋯ , % � being composed of the cur-
rent values of αααα. This is a penalized logistic log-
likelihood function and requires iterative maximization. 
The iteratively reweighed least-squares algorithm can be 
used to find �>? [15][16][16]. 
2) The logistic log-likelihood function can be differen-
tiated twice to obtain the Hessian in the form of ∇H∇H9:;�(�|
, .�|�IJ = −(∅0L∅ + @� (8) 
where L = ABC;(M" , M,, ⋯ , M � is a diagonal matrix with M� = �{�(��; �>?�}[1 − �{�(��; �>?�}] and ∅ is the design 
matrix with ∅�N = O(�� , �N#"� and ∅�" = 1. This result 
is then negated and inverted to give the covariance Σ, as 
shown as follows, for a Gaussian approximation to the 
posterior over weights centered at �>?: ∑ = (∅0 L∅ + @�#" (9) 
In this way, the classification problem is locally linearized 
around �>? in a effective way with �>? = ΣΣΣΣ∅0L
̂ 
̂ = ∅�>? + L#"(
 − �� 

These equations are basically equivalent to the solution 
of a generalized least-square problem. After obtaining �>? the hyper-parameters %& are updated using %&�SH =
λ&/+&,, where +&, is the ith posterior mean weight and 
λ&  is defined as λ& = 1 − Σ&& where Σ&&   is the ith diagonal 
element of the covariance, and can be regarded as a 
measure of how well determined each parameter +&   is by 
the data. During the optimization process, many %& will 
have large values, and thus, the corresponding model 
weights are pruned out, realizing sparsity. The optimiza-
tion process typically continues until the maximum 
change in %& values is below a certain threshold the maxi-
mum of iteration number of iterations is reached. 

IV. EXPERIMENTAL RESULTS 

In what follows, we provide details on how the experi-
ments have been conducted, and present the comparative 
analysis of the two types of SVMs with respect to the 
kernel parameter and number of support vector variation. 
The most popular kernels used in SVM and RVM are the 
linear, polynomial, radial basis function (RBF) and expo-
nential radial basis function (ERBF) kernels. The linear 
kernel typically shows a lower performance and is there-

fore not employed in the provided results. Note that �, 
determines the variance in the case of the RBF and ERBF 
kernel.  
• Linear Kernel OU�& , �VW = �& . �V 

• Polynomial Kernel 

OU�& , �VW = U�& . �VWX
 

• RBF Kernel 

OU�& , �VW = YZ� [− \�] − �V\,
2�, ^ 

• ERBF Kernel 

OU�& , �VW = YZ� *− \�& − �V\2�, - 

A. Configuration of the experiments 

In the experiments accomplished, as mentioned before, 
we have assessed the performance of the RVM and SVM 
models with regard to the variation of kernel parameter, 
keeping the value of the regularization parameter C con-
stant in 100. This value was achieved after some prelimi-
nary experiments and agrees with the fact that SVM mod-
els with low values of C tend in general to achieve better 
performance than those with high values of this parame-
ter. Although we know that there are several rules-of-
thumb to select the values kernel parameter [3], for RBF 
and ERBF kernel we have opted to set the values of σ as 

4,2,1,5.0  and for polynomial kernel we have opted to set 

the values of d as 1, 2, 3, 4. For each of the four values in 
this range, a 10-fold cross-validation was performed to 
better gauge the average performance of the models. To 
define whether a sample will be a support vector or relev-
ance vector was used a threshold equal to 10-6, i. e, _._ > 10#a. 

B. Results 

In Table 1, we provide the value(s) of the kernel para-
meter and the correspondent number of support vector 
(SV) for the SVM and number of relevance vector (RV) 
for the RVM, in terms of cross-validation, for each 
quadruple <features vector, model type, kernel type, ker-
nel parameter>. Besides the features vector considered, 
was conducted simulation with the EEG series without 
pre-processing. 

C. Discussion 

Considering the results presented in Table 1, one can 
observe that, in most of the cases, the performance indices 
(i.e. misclassification rate) showed by the two types of 
vector machines were quite similar to each other, with a 
slight prevalence of the standard SVM models. However, 
RVM requires a significantly less number of relevance 
vectors (RVs) as compared with the number of support 
vector (SVs) used in SVM; hence the classification time 
is considerably reduced.  

Except for the feature vector extracted through standard 
deviation and maximum of the coefficients of wavelet, the 
SVM, with RBF and ERBF kernel and parameter σ = 3, 
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4; produced a smaller number of SVs when compared to 
number of RVs used in RVM. This can be justified due to 
the very low value of the threshold used to define SVs 
and RVs. For other kernel parameters value and features 
vector the number of the SVs was much bigger than the 
number of RVs. 

From these results, it is possible to conclude that the 
choice of the kernel parameter value and kernel function 
was not so much an important factor to be considered to 
distinguish between the overall best error rates exhibited 
by the machines.  

When comparing the results obtained using features 
vector and EEG data without pre-processing, one ob-
served that the performance is quite similar. This indi-
cates that the selection of parameters to the kernel is more 
important than the technique used for the extraction of 
features.  

V. CONCLUDING REMARKS 

In this paper, we have presented a preliminary analysis 
study contrasting as the performance exhibited by SVM 
and RVM classifiers as number of the SVs and RVs with 
respect to the calibration of the kernel parameter value 
and vector feature applied to EEG signals classification 
problem. Such study is interesting as it can provide hints 
on how these machines are affected by the hyper-
parameter tuning process and feature vector extracted in 
the EEG signal classification problem.  

Experimental results show that RVM is superior to 
SVM in terms of the number of kernel functions that 
needs to be used in the classification phase. Therefore, 
RVM is preferable SVM in applications that require low 
complexity and, possibility, real-time classification with a 
priori training. 

As ongoing work, we are currently extending the scope 
of investigation by considering multiclass problems, other 
kernel functions (and parameters), other types of vector 
machines — such as the Proximal SVMs, the Lagrangian 
SVMs [7], as well as (and most importantly) the conjoint 
influence of the hyper-parameters. In the future, we plan 
to investigate how the combination of models coming 
from different types of vector machines, each configured 
with the same values of the control parameters, can im-
prove the levels of performance, in terms of accuracy and 
generalization, from that achieved by each vector machine 
type alone. 
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Table 1 - Comparative analysis: For each quadruple <features vector, model type, kernel type, kernel parameter> 
Feature 
vector 

Kernel 
Type 

Kernel Parameter SVM RVM 
σ d Error SV Error RV 

Raw EEG 
Data 

ERBF 

0.5 - 0.575 ± 0.0226 180 ± 0.0000 0.500 ± 0.0333 103.2 ± 0.4422 
1 - 0.385 ±0.0699 180 ± 0.0000 0.485 ± 0.0325 96.3 ± 0.6675 
2 - 0.005 ± 0.0050 151.2 ± 0.5333 0.480 ± 0.0326 88.3 ± 0.6675 
4 - 0.000 ± 0.0000 66.6 ± 0.6863 0.015 ± 0.0106 57.5 ± 5.6711 

Poly 

- 1 0.290 ± 0.0296 127.8 ± 1.3317 0.250 ±0.0307 5.4 ± 0.2666 
- 2 0.230 ± 0.0416 130.3 ± 2.0279 0.460 ± 0.0305 8.2 ± 0.1333 
- 3 0.395 ± 0.0404 105.0 ± 2.0817 0.365 ± 0.0799 4.1 ± 0.1000 
- 4 0.340 ± 0.0400 19.5 ± 0.9098 0.500 ± 0.0333 8.0 ± 0.2582 

RBF 

0.5 - 0.580 ± 0.0200 180 ± 0.0000 0.500 ± 0.0333 180 ± 0.0000 
1 - 0.575 ± 0.0226 180 ± 0.0000 0.500 ± 0.0333 180 ± 0.0000 
2 - 0.575 ± 0.0226 180 ± 0.0000 0.500 ± 0.0333 23.7 ± 0.55877 
4 - 0.295 ± 0.0479 180 ± 0.0000 0.440 ± 0.0286 100.5 ± 10.896 

W_Avg 

ERBF 

0.5 - 0.105 ±  0.0273 154.8 ± 0.87939 0.125 ± 0.0300 35.2 ± 4.7394 
1 - 0.115 ± 0.0307 101.5 ± 0.95743 0.115 ± 0.0247 12.1 ± 0.27689 
2 - 0.115 ± 0.0307 98.7 ± 0.9434 0.125 ± 0.0271 18.6 ± 4.1317 
4 - 0.115 ± 0.0307 97.1 ± 0.72188 0.130 ± 0.0249 79 ± 9.3178 

Poly 

- 1 0.455 ± 0.0283 168.9 ± 1.8586 0.560 ± 0.0266 1.9 ± 0.27689 
- 2 0.120 ± 0.0226 30.3 ± 0.68394 0.110 ± 0.0221 10.5 ± 0.37268 
- 3 0.235 ± 0.0258 51.2 ± 1.0414 0.270 ± 0.0606 11.3 ± 0.81718 
- 4 0.220 ± 0.0226 47.1 ± 1.2949 0.365 ± 0.0703 9.9 ± 0.9481 

RBF 

0.5 - 0.100 ± 0.0197 120.1 ± 1.1874 0.250 ± 0.0428 52.6 ± 1.3515 
1 - 0.130 ± 0.0249 44.8 ± 0.8 0.150 ± 0.0341 28.1 ± 2.6476 
2 - 0.120 ± 0.0290 45.5 ± 1.0138 0.125 ± 0.0250 13.3 ± 1.3337 
4 - 0.130 ± 0.0260 65.1 ± 1.0588 0.100 ±0.0210 94.8 ± 8.4074 

W_Std 

ERBF 

0.5 - 0.005 ± 0.0050 87.6 ± 0.7774 0.005 ± 0.0050 96.7 ± 6.2004 
1 - 0.000 ± 0.0000 33 ± 0.42164 0.005 ± 0.0050 17.9  ±  6.5599 
2 - 0.000 ± 0.0000 18.4 ± 0.49889 0.005 ± 0.0050 71.1 ± 12.469 
4 - 0.000 ± 0.0000 16.5 ± 0.45338 0.005 ± 0.0050 133.8 ± 9.4349 

Poly 

- 1 0.005 ± 0.0050 4.2 ± 0.13333 0.010 ± 0.0066 1.9 ± 0.1000 
- 2 0.005 ± 0.0050 6.7 ± 0.335 0.005 ± 0.0050 2.2 ± 0.1333 
- 3 0.000 ± 0.0000 3.6 ± 0.33993 0.000 ± 0.0000 2 ± 0.0000 
- 4 0.010 ± 0.0066 6.5 ± 0.26874 0.005 ± 0.0050 3.6 ± 0.2666 

RBF 

0.5 - 0.005 ± 0.0050 63.5 ± 0.79232 0.005 ± 0.0050 67.1 ± 6.6507 
1 - 0.000 ± 0.0000 33.6 ± 0.68638 0.010 ± 0.0066 32.5 ± 8.9446 
2 - 0.000 ± 0.0000 5.5 ± 0.70317 0.005 ± 0.0050 65.2 ± 14.3045 
4 - 0.000 ± 0.0000 5.4+-0.22111 0.005 ± 0.0050 96 ± 11.1744 

W_Max 

ERBF 

0.5 - 0.005 ± 0.0050 90.9 ± 0.58595 0.005 ± 0.0050 106.3 ± 4.96 
1 - 0.000 ± 0.0000 28.6 ± 0.6532 0.000 ± 0.0000 26.1 ± 5.5165 
2 - 0.000 ± 0.0000 13.4 ± 0.4761 0.005 ± 0.0050 97.9 ± 6.6857 
4 - 0.000 ± 0.0000 12.3 ± 0.36667 0.000 ± 0.0000 131.2 ± 4.2395 

Poly 

- 1 0.010 ± 0.0066 5.4 ± 0.2211 0.010 ± 0.0066 1.9 ± 0.1000 
- 2 0.015 ± 0.0106 8.4 ± 0.4000 0.040 ± 0.0348 2.8 ± 0.2000 
- 3 0.005 ± 0.0050 6.3 ± 0.2134 0.005 ± 0.0050 2 ± 0.0000 
- 4 0.020 ± 0.0081 10.8 ± 0.3887 0.135 ± 0.0781 21.6 ± 17.605 

RBF 

0.5 - 0.000 ± 0.0000 70.5 ± 0.5426 0.005 ± 0.0050 61.3 ± 10.127 
1 - 0.005 ± 0.0050 9.3 ± 2.2214 0.015 ± 0.0076 62.2 ± 8.7519 
2 - 0.005 ± 0.0050 5.4 ± 0.5206 0.010 ± 0.0066 40.6 ± 11.6411 
4 - 0.010 ± 0.0066 6.3 ± 0.1527 0.005 ± 0.0050 118.2 ± 2.8316 


