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a b s t r a c t

Many communication systems based on the synchronism of chaotic systems have been
proposed as an alternative spread spectrum modulation that improves the level of privacy
in data transmission. However, depending on the map and on the encoding function, the
transmitted signal may cease to be chaotic. Therefore, the sensitive dependence on initial
conditions, which is one of the most interesting properties for employing chaos in
telecommunications, may disappear. In this paper, we numerically analyze the chaotic
nature of signals modulated using a system that employs the Ikeda map. Additionally, we
propose changes in the communication system in order to guarantee that the modulated
signals are in fact chaotic.

& 2014 Elsevier B.V. All rights reserved.
1. Introduction

Non-linear systems and chaos have been applied in all
areas of engineering [1]. This fact is particularly true when
it comes to Signal Processing and Telecommunications,
especially after the works by Pecora and Carroll [2] and Ott
et al. [3]. Chaos has appeared in different areas as digital
and analog modulation, cryptography, pseudorandom
sequences generation, watermarking, nonlinear adaptive
filters, phase-locked loop networks, among others (see e.g.,
[4–13]).

Three defining properties of chaotic signals are their
boundedness, aperiodicity and sensitive dependence on
initial conditions (SDIC) [14]. This last property means
that, if the generator system is initialized with a slightly
different initial condition, the obtained signal quickly
ido),

p.br (M. Eisencraft).
diverges from the original one. These three properties all
together are necessary for a signal to be called chaotic
and are the basis for the alleged advantages of using chaos
in communications, as an improvement in security [15].
However, in almost all chaos-based communication
schemes proposed in the literature, the facts that there is
a nonlinear system that, when isolated, generates chaotic
signals and that the transmitted signals are apparently
aperiodic are taken as sufficient evidence of chaos, without
further investigation. The SDIC is taken for granted. This is
partly due to the fact that when it comes to practical
applications, to verify the SDIC is not immediate.

As communication systems are always related to the
transmission of probabilistic aperiodic messages, it
becomes non-trivial and of paramount importance to
detect if the aperiodicity in the transmitted signals comes
from the nonlinearity of the transmitter or from the
message itself, in which case the chaos advantages are
not really present. This issue is particularly relevant when
the non-linear system employed presents a stable fixed
point besides the chaotic attractor. From one temporal
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Fig. 1. Examples of (a) chaotic and (b) non-chaotic signals concerning sensitive dependence on initial conditions. (a) Two aperiodic orbits with very close
initial conditions turning into different signals after some iterations. (b) Two signals starting with different initial conditions leading to the same orbit after
some iterations.
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series it is hard to visually distinguish a chaotic signal
stepping through the chaotic attractor and an orbit con-
verging to the fixed point but continuously perturbed. The
difference is only in terms of SDIC.

As an example, Fig. 1(a) shows the expected behavior of
chaotic signals. Two aperiodic orbits with very close initial
conditions are shown. After approximately 40 samples
they become apart in the state space, clearly presenting
SDIC. In contrast, the signals in Fig. 1(b) does not present
SDIC. Starting from different initial conditions, they start
to follow almost the same path after approximately
70 samples. Although bounded and aperiodic, the signals
in Fig. 1(b) are not chaotic.

The usual technique to evaluate the SDIC is via Lyapu-
nov Exponents (LE) [14]. The Lyapunov numbers are the
average per-step exponential divergence rate of nearby
points along an orbit, one for each direction, and the LE are
the natural logarithm of the Lyapunov numbers [14]. Given
a deterministic map, it is relatively straightforward to
numerically evaluate the LE of its orbits [14]. However,
when it comes to chaos-based communication systems
proposals where the message to be transmitted is fed back
in the chaotic signal generator (CSG) [16–19], complica-
tions may appear.

Bearing all these in mind, in this paper we analyze the
chaos-based communication system proposed in [19] in
order to verify if the transmitted signals are in fact chaotic.
Ref. [19] employed a particular codification scheme in
order to implement an efficient communication system
based on Ikeda map [14,20]. This map was considered in
[19] since it can be envisioned as arising from a string of
light pulses impinging on a partially transmitting mirror of
a ring cavity with a nonlinear dispersive medium, and
therefore, can be used to model a discrete-time low-pass
version of the optical communication scheme of [15].
However, caution must be taken, once that the Ikeda
map presents co-existing attractors with close basin of
attractions: a stable fixed point and a chaotic attractor [14].
This particular structure can possibly generate some draw-
backs for the conception of efficient chaos-based commu-
nication systems, presenting apparently aperiodicity with
lack of SDIC. Therefore, in this work, a more detailed
analysis concerning the presence and the consequences
of dealing with co-existing attractors is performed and
illustrated by a representative set of simulations. Further-
more, a strategy guided by the LE associated with such
attractors is adopted for suitably defining the amplitude of
the message in order to guarantee a truly chaos-based
system.

The paper is organized as follows. In Section 2, we
review the system used in [17–19] and Section 3 describes
the main properties of the Ikeda map. In Section 4, we
numerically analyze the transmitted signals of [19] and
propose changes in the system in order to guarantee that
the transmitted signals are truly chaotic. Finally, in Section 5,
we draft some conclusions.

2. Problem formulation

Wu and Chua's synchronization scheme proposed in
[16] is a simple way to use chaos for communication. They
addressed chaotic system synchronization differently from
Pecora and Carroll's seminal paper [2]. Instead of using
conditional LE to check the asymptotic stability of the slave
system and hence the possibility of synchronism, Wu and
Chua restated the master and slave equations in such a
way that it is easy to verify the convergence of the
synchronization error to zero. Based on this synchroniza-
tion scheme, a communication system was proposed in
[16] and a discrete-time version appeared later in [21].
In this section, we succinctly revise these ideas.

Consider two discrete-time systems defined by

xðnþ1Þ ¼AxðnÞþbþfðxiðnÞÞ ð1Þ

bxðnþ1Þ ¼AbxðnÞþbþfðxiðnÞÞ ð2Þ
where nAN represents time instants, xðnÞ and bxðnÞ are
real-valued column vectors of length K, i.e, xðnÞ ¼
x1ðnÞ x2ðnÞ … xK ðnÞ½ �T and bxðnÞ ¼ bx1ðnÞ bx2� ðnÞ … bxK ðnÞ�T , xi
and bxi represent states of the system with i¼1,…,K, and
ð�ÞT stands for transposition. A is a square matrix and b a
column vector, both constants, real-valued and of
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dimension K. The vector function fð�Þ: R-RK is nonlinear
in general and is assumed to depend solely on one
component of xðnÞ, having the form:

fðxiðnÞÞ ¼ 0 0 ⋯ 0|fflfflfflfflffl{zfflfflfflfflffl}
i�1 zeros

f xiðnÞð Þ 0 0 ⋯ 0|fflfflfflfflffl{zfflfflfflfflffl}
K� i zeros

24 35T

; ð3Þ

where f ð�Þ is a scalar function. The system described by
(1) is autonomous and is called master, whereas the one
described by (2) depends on xiðnÞ and is called slave.

The synchronization error is defined as eðnÞ9bxðnÞ�xðnÞ and its dynamics is given by

eðnþ1Þ ¼AeðnÞ: ð4Þ
Master and slave are said completely synchronized [22] if
eðnÞ-0 as n grows. Consequently, a sufficient condition for
complete synchronization is given by

jλijo1; 1r irK ; ð5Þ
where λi are the eigenvalues of A [23]. Therefore, if a
system can be written as (1) with the eigenvalues of A
satisfying (5), it is easy to set up a slave system that
synchronizes with it.

Using this synchronization method, Wu and Chua [16]
proposed an information transmission system using chao-
tic signals that leads to no errors under ideal channel
conditions. A block diagram of the discrete-time version of
this system is shown in Fig. 2 [21]. In this scheme, the
information signal m(n) is encoded by using the i-th
component of the state vector xðnÞ via a coding function:

sðnÞ ¼ c xiðnÞ;mðnÞð Þ; ð6Þ
so that the information signal can be decoded using the
inverse function with respect to m(n), i.e.,

mðnÞ ¼ c�1 xiðnÞ; sðnÞð Þ: ð7Þ
The equations governing the global system have the same
form as (1) and (2). The only changes are the arguments of
fð�Þ, i.e.,
xðnþ1Þ ¼AxðnÞþbþfðsðnÞÞ ð8Þ

bxðnþ1Þ ¼AbxðnÞþbþfðsðnÞÞ: ð9Þ
Fig. 2. Chaotic commu
Since the synchronization error dynamics is given again
by (4) and if (5) holds, then bxðnÞ-xðnÞ and, in particular,bxiðnÞ-xiðnÞ. Thus, using (7), we obtain

bmðnÞ ¼ c�1 bxiðnÞ; sðnÞ� �
-c�1 xiðnÞ; sðnÞð Þ ¼mðnÞ: ð10Þ

Therefore, when transmitter and receiver parameters are
perfectly matched over an ideal channel, the message is
recovered without degradation at the receiver except for a
synchronization transient.

In this context, different chaotic maps can be written in a
form similar to (8) and (9) and therefore, can be used in a
chaos-based communication system. These are the cases of
Hénon [24] and Ikeda [20] maps, as we shall see in the sequel.
2.1. Communication system using the Hénon map

The Hénon map can be described by the following
[14,24]

x nþ1ð Þ ¼
x1ðnþ1Þ
x2ðnþ1Þ

" #
¼ α�x21ðnÞþβx2ðnÞ

x1ðnÞ

" #
; ð11Þ

that can be rewritten as (1) with K¼2, A¼ 0
1
β
0

h i
, b¼ α 0½ �T ,

and fðx1ðnÞÞ ¼ �x21ðnÞ 0
� �T . The eigenvalues of A are

λ1;2 ¼ 7
ffiffiffi
β

p
and, according to (5), there is chaotic syn-

chronization for jβjo1.
The equations governing the communication system based

on (11) have the same form as (8) and (9) with fðsðnÞÞ ¼
�s2ðnÞ 0� �T . As coding function, we may choose [18]

sðnÞ ¼ c x1ðnÞ;mðnÞð Þ ¼mðnÞx1ðnÞ; ð12Þ

being mðnÞ ¼ 71 a binary polar message. For this particular
choice of cð�; �Þ, the decoding function can be implemented by

bm nð Þ ¼ c�1 bx1ðnÞ; sðnÞ� �¼ sðnÞbx1ðnÞ: ð13Þ

The encoding function (12) associated to the Hénon map has
an interesting property: for a binary polar message, we can
observe from (12) that s2ðnÞ ¼ x21ðnÞ. Thus, fðsðnÞÞ ¼ fðx1ðnÞÞ
does not depend onm(n). Consequently, the message does not
disturb the Hénon CSGs. This means that the transmitted
nication system.



Fig. 3. Simulation of the communication system shown in Fig. 2 with the Hénon map (α¼ 1:4 and β¼ 0:3): (a) message m(n); (b) transmitted signal s(n);
and (c) recovered message bmðnÞ.
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signal is in fact chaotic as long as the signals generated by the
CSGs are chaotic.

Fig. 3 shows an example of a binary message m(n),
transmitted signal s(n) encoded by the Hénon map with
α¼ 1:4 and β¼ 0:3, and recovered message bmðnÞ for an
ideal channel. We can observe in this case that the
message is recovered perfectly after a transient, as
expected.
2.2. Communication system using the Ikeda map

Under some simplifying assumptions, the Ikeda map
is a model for a type of cell that might be used in an optical
computer [14,20]. It is a bidimensional map given by

xðnþ1Þ ¼
x1ðnþ1Þ
x2ðnþ1Þ

" #
¼

C2x1ðnÞ cosθðnÞ�C2x2ðnÞ sinθðnÞþR

C2x1ðnÞ sinθðnÞþC2x2ðnÞ cosθðnÞ

" #
;

ð14Þ

where

θ nð Þ ¼ C1�
C3

1þx21ðnÞþx22ðnÞ
; ð15Þ

and C1, C2, C3, and R are real constants.
The equations governing the communication system

based on (14) can be written in a form similar to (8) and
(9), i.e.,

xðnþ1Þ ¼AtðnÞxðnÞþ½R 0�T ; ð16Þ

bxðnþ1Þ ¼ArðnÞbxðnÞþ½R 0�T ; ð17Þ
where

At nð Þ ¼ C2
cos θtðnÞ � sin θtðnÞ
sin θtðnÞ cos θtðnÞ

" #
1 0
0 mðnÞ

" #
;

Ar nð Þ ¼ C2
cos θrðnÞ � sin θrðnÞ
sin θrðnÞ cos θrðnÞ

" #
1 0
0 bmðnÞ

" #
;

θt nð Þ ¼ C1�
C3

1þx21ðnÞþs2ðnÞ; θr nð Þ ¼ C1�
C3

1þbx21ðnÞþbs2 ðnÞ;
sðnÞ ¼mðnÞx2ðnÞ, and bsðnÞ ¼ bmðnÞbx2ðnÞ. Again, we have
assumed that the same encoding function of the previous
example [Eq. (12)] with x2ðnÞ in place of x1ðnÞ as in [19] and
a binary message. It is important to notice that, differently
from the communication system based on the Hénon map,
the matrices At and Ar are now time-dependent and
contain the nonlinear encoding function.

In this case, the dynamics of the synchronization error
is given by

eðnþ1Þ ¼ ArðnÞ�AtðnÞ½ �eðnÞ: ð18Þ
Ensuring the exponential stability of (18) is a sufficient
(but not necessary) condition for complete synchroniza-
tion between master and slave. From linear system theory,
(18) is uniformly exponentially stable if there exist a
constant 0rρo1 such that the maximum absolute eigen-
value of ArðnÞ�AtðnÞ½ � satisfies [25]

∏
N2

n ¼ N1

jλmaxðnÞjrρN2 �N1 þ1 for all N2 and N1 such that

N2ZN1; ð19Þ
where jλmaxðnÞj9maxfjλ1ðnÞj; jλ2ðnÞjg and λiðnÞ, i¼1,2
are the eigenvalues of ArðnÞ�AtðnÞ½ �. In other words, if



Fig. 4. (a) Logarithm of the maximum value of jλmaxðnÞj in L¼ 104 independent runs and (b) histogram of the maximum absolute values of the eigenvalues
of ArðnÞ�At ðnÞ at n¼30, assuming a binary equiprobable random message.

Fig. 5. Ikeda map attractors.
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jλmaxðnÞjo1 for all nZN1, master and slave synchronize
completely in an Ikeda-based communication system.

Proving that λmaxðnÞ o1j
�� for all n greater than some N1

is not a simple task and some assumptions on the
transmitted and recovered message are necessary, even
when the channel is ideal. This occurs since in the Ikeda
map AtðnÞ and ArðnÞ depend on m(n) and bmðnÞ, respec-
tively. Therefore, we show next some numerical simula-
tions to illustrate that the synchronization between master
and slave may be achieved for an ideal channel, consider-
ing the usual parameters for the Ikeda map [14]:

C1 ¼ 0:4; C2 ¼ 0:9; C3 ¼ 6; and R¼ 1: ð20Þ
Assuming a binary equiprobable random message

mðnÞAf�1; þ1g and initializing the state vectors as
xð0Þ ¼ 0 and bxð0Þ ¼ ½0:1 �0:1�T , we performed L¼ 104

independent runs of Eqs. (16) and (17). For each iteration
n, we observed jλmaxðnÞj along all the L runs. Fig. 4(a)
shows the maximum value of jλmaxðnÞj for each iteration
among the L runs and Fig. 4(b) shows a histogram of
jλmaxðnÞj at n¼30. From the histogram, we can observe
that the maximum absolute value of the eigenvalues may
be greater than one at n¼30, but this occurs with a low
frequency (only 16 times in 104 runs). As n grows, the
frequency of jλmaxðnÞj41 decreases and after 64 iterations,
maxLfjλmaxðnÞjg converges to a value smaller than one.
Therefore, (19) is satisfied and master and slave comple-
tely synchronize. By means of simulations with different
initializations, we have noticed that this is the typical
behavior when master and slave are initialized in the same
basin of attraction.
3. Basins of attraction of the Ikeda map

Although we can observe synchronization in the com-
munication system described by (16) and (17), there is no
guarantee that the transmitted signal is actually chaotic.
This occurs since the Ikeda map presents a stable fixed
point besides the chaotic attractor, as described next.

In certain ranges of the parameters C1, C2, C3, and R,
the Ikeda map presents two fixed point sinks. For instance,
setting these parameters as (20), one of these sinks has
developed into what is numerically observed to be a
chaotic attractor, with LE h1 ¼ 0:51 and h2 ¼ �0:72. The
remaining stable fixed point is located at xn � ½2:97 4:15�T
with LE h1 � �0:11 and h2 ¼ �0:10. For this set of para-
meters, the orbits of (14) present two possible behaviors:
(i) convergence to the fixed point xn or (ii) convergence to
the chaotic attractor. Fig. 5 shows both attractors in the
phase state along with their basins of attraction. The
chaotic attractor is shown in black and the fixed point
attractor is indicated by a cross. The highlighted area
indicates the points of the map that lead to the chaotic
attractor, whereas the points outside this area lead to the
fixed point attractor. Hence, we can conclude that using a
map like Ikeda's in a scheme as the one described in Fig. 2
requires caution. Depending on the perturbation repre-
sented by the message encoding, the orbit can easily
escape from the basin of attraction of the chaotic regime.

In the following, the co-existing attractors are charac-
terized in terms of their LE, which, afterwards, are taken as
a criteria for suitably setting the amplitude of the message,
avoiding transitions of basin of attractions and ensuring



Fig. 6. Example where the encoding of the message leads to a non-chaotic behavior: (a) Portion of the message to be encoded; (b) Portion of the signal
obtained after the encoding of the message; (c) Phase space (x1ðnÞ by x2ðnÞ) converging to the fixed point indicated by the cross; Ikeda map with
parameters as (20). (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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chaos-based operation for such communicating system.
To accomplish this task, the procedure for LE numerical
evaluation is briefly described in Appendix A.

4. Numerical analysis

Assuming the multiplication as encoding function, i.e.,
sðnÞ ¼mðnÞx2ðnÞ and a binary message, we show next an
example to illustrate that the orbit may escape from the
basin of attraction of the chaotic regime for the system
described in Section 2.2. Fig. 6 shows a portion of a binary
messagem(n), the corresponding portion of the signal s(n),
and the phase space x1ðnÞ by x2ðnÞ. The yellow area in
Fig. 6(c) indicates the basin of attraction of the chaotic
attractor shown with black and red points. Depending on
the value of the state x2ðnÞ, when it is multiplied by �1,
we can observe two different behaviors: (i) if x2ðnÞ is one
of the black points in the yellow area, the orbit remains in
it and s(n) remains chaotic or (ii) if x2ðnÞ is one of the red
points in the yellow area, the coordinate ½x1ðnÞ; �x2ðnÞ� is
outside the basin of attraction, and therefore the orbit
escapes from the chaotic regime. For instance, in the
iteration n1, x2ðn1Þ is a black point and the encoding of
mðn1Þ ¼ �1 does not perturb the chaotic regime. On the
other hand, in the iteration n2, x2ðn2Þ is a red point and the
encoding of mðn2Þ ¼ �1 leads the orbit to the fixed point,
indicated by the cross in the figure. Notice that once the
orbit has left the basin of attraction of the chaotic attractor,
it will never come back. Each time a �1 is presented, the
orbit just oscillates next to the attractive fixed point,
generating a signal as shown in Fig. 1(b).These signals
are not chaotic.

To solve this problem, instead of using the multiplica-
tion, we can consider the following encoding function:

s nð Þ ¼ x2 nð Þþγ
2

1þm nð Þ½ �: ð21Þ

Fig. 7 shows attractors in the phase state along with their
basins of attraction considering (21) as encoding function.
Fig. 7(a)–(c) considers (21) with γ ¼ 1, γ ¼ 10�2, and
γ ¼ 10�3, respectively. We can observe that γ ¼ 1 is not a
good choice, since there are many points in the yellow area
that lead the orbit to the fixed point. For γ ¼ 10�2, few points
in the yellow area may lead the orbit to the fixed point. Finally,
using γ ¼ 10�3 the orbit always remains in the yellow area.

As a way to access the chaotic nature of the transmitted
signals, we can calculate the major LE of the orbits of (14)
and (15), using s(n) as in (21) in the place of x2ðnÞ. For this,
we used the usual Jacobian method as described in
Appendix A and considered m(n) as a time varying para-
meter. The substitution of x2ðnÞ by s(n) can be seen as a
perturbation of the original orbit and it still tends to one of
the attractors of the Ikeda map: the fixed point with
h1 � �0:11 or the strange attractor with h1 ¼ 0:51.



Fig. 7. Phase space (x1ðnÞ by x2ðnÞ), indicating the points that would lead the orbit to converge to the fixed point if a “�1” bit were encoded using (21) with
(a) γ ¼ 1, (b)γ ¼ 10�2, and (c) γ ¼ 10�3; Ikeda map with parameters as (20).

Fig. 8. Maximum Lyapunov exponent h1 as a function of γ of (21) for equiprobable messages.
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Assuming (21) as encoding function, Fig. 8 shows the
Lyapunov exponent obtained numerically as a function of
γ for random initial conditions, equally probable symbols,
a transitory of 106 samples and 106 samples used in the h1
calculation. The resulting curve clearly agree with Fig. 7.
For γ lower than approximately 0:8� 10�2 the trans-
mitted signal is in fact chaotic.
5. Conclusion

Many works in the literature present chaos-based
communication schemes. However, they seldom worry if
the transmitted signals are in fact chaotic. In this paper, we
numerically analyzed the chaotic nature of the transmitted
signals of a system that employs the Ikeda map. It is shown
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that depending on the encoding function, the generated
signals can cease to be chaotic, although remaining aper-
iodic due to the random nature of the message itself. In
such cases, the sensitive dependence on initial conditions,
fundamental property for employing chaotic signals in
telecommunications, disappears. The same issue can arise
in many other maps where two different attractors coexist.
In these cases, to verify the sensitive dependence on initial
conditions, the numerical analysis presented here can be
straightforwardly extended by calculating the major LE of
the orbits using the Jacobian method and considering m(n)
as a time varying parameter. As a main conclusion of this
paper,we state that in proposing a chaos-based commu-
nication system, it is very relevant to study the dynamics
of the underlying chaotic system and not just count on the
aperiodicity of the transmitted signals.
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Appendix A. Lyapunov exponents

The LE are classically defined as the mean divergence
(or convergence) rate of initially close trajectories, which
can be numerically computed by means of the classical
Jacobian method [14].

The Jacobian method consists in monitoring the
expanding or contracting effects associated to the applica-
tion of the Jacobian of the map on linearly independent
vectors with unitary norm that span all space phase
directions (vector basis). Once a initial basis is chosen,
the Jacobian should be applied to the vectors of this basis
and an orthonormalization provided by the Gram–Schmidt
procedure should be made. The LE are computed as the
average of the natural logarithms of the norm of the
resulting vectors along the N iterations of the map. The
whole computation process can be summarized in the
following steps:
For each point x of the trajectory do:

1.
 Compute the Jacobian JðxÞ of the map on that point.

2.
 Apply the Jacobian to orthogonal and linearly inde-

pendent set of vectors W¼ ½w1 w2 … wk�, in order to
obtain Z¼ JW. For the first iteration, W can be set as
the identity matrix IK , being K the order of the map.
3.
 Apply the Gram–Schmidt procedure on Z¼
½z1 z2 … zk� to obtain a numerically corrected set of
vectors V¼ ½v1 v2 … vk� and their normalized versions
U¼ ½u1 u2 … uk�, where ui ¼ vi=Jvi J for i¼ 1;2;…;K .
4.
 Compute the norm of the vectors vi, i.e., ri ¼ Jvi J , with
i¼ 1;2;…;K .
5.
 Update the orthogonal, normalized and linearly inde-
pendent set of vectorW asW’U for the next iteration
of the algorithm, i.e., for the next point in the
trajectory.
i¼ 1;2;…;K can be obtained by

Finally, the Lyapunov exponent hi for each direction

hi ¼ lim
N-1

1
N

∑
N

k ¼ 1
ln Jri kð ÞJ : ðA:1Þ

In practice, N is chosen sufficiently large. For instance, in
our simulations, we considered N¼ 106.

The Gram–Schmidt procedure is required to avoid
numerical problems, for instance, the collapse of the
Jacobian matrix into a single (most expansive) direction
and also ensure orthogonality to the referential vectors
(W) to which the Jacobian is applied.

In the master system considered here, there is a
random binary message m(n) that affects the dynamical
system. In order to numerically evaluate the LE, we
employed the computation process described above,
considering m(n) as a time variant parameter.
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