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Many communication systems applying synchronism of chaotic systems have been proposed as an 
alternative spread spectrum modulation that improves the level of privacy in data transmission. However, 
due to the lack of robustness of chaos synchronization, even minor channel imperfections are enough 
to hinder communication. In this paper, we propose an adaptive equalization scheme based on a 
modified normalized least-mean-squares (NLMS) algorithm, which enables chaotic synchronization when 
the communication channel is not ideal. As an example of application, this scheme is used to recover 
a binary sequence modulated by a chaotic signal generated by the Hénon map. Simulation results show 
that the modified NLMS can successfully equalize the channel in different scenarios.

© 2014 Elsevier Inc. All rights reserved.
1. Introduction

In the last two decades, the feasibility of communication sys-
tems based on the synchronism of chaotic systems has been 
theoretically and experimentally investigated (e.g., [1–5]). Chaotic 
signals are deterministic, aperiodic, limited, and present sensitive 
dependence on initial conditions [6]. Therefore, they have been 
proposed as broadband information carriers and may yield inter-
esting properties like multipath and jamming immunity [7–9]. Be-
sides, they have the potential of providing high level of privacy in 
data transmission [4,10].

Recently, some works with a practical approach using chaotic 
synchronization have appeared, mainly in the optical communi-
cation domain (see, e.g., [4,11]). This is somewhat natural since 
chaotic generators can be easily created using the intrinsic nonlin-
ear properties of lasers [11]. This fact was exploited in [4], where 
a high-speed long-distance communication system based on chaos 
synchronization was demonstrated over a commercial fibre-optic 
link. In this system, it was possible to obtain bit error ratios next 
to the usually expected in a conventional communication system. 
However, it is important to notice that the dispersion effects were 
compensated in a non-adaptive manner. The system as proposed 
in [4] would perform badly in a wireless channel where distortions 
vary constantly in time due to multipath, changing noise sources, 
and other time-variant impairments.

In fact, one of the worst drawbacks in chaos-based communi-
cation systems is the lack of robustness of chaotic synchroniza-
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tion with respect to noise and intersymbol interference (ISI) intro-
duced by the channel. Even minor noise levels or simple linear 
distortions are enough to hinder communication, which usually 
depends on identical synchronization [12,13]. Many chaos-based 
communication systems, if implemented as proposed in the lit-
erature, tend to present prohibitive bit error rates in non-ideal
channels when compared to their conventional counterparts [13]. 
Although some preliminar results were obtained in more realis-
tic channels [5,14,15], it is of paramount importance to propose 
schemes that can adapt to the practical impairments of real com-
munication channels. Otherwise they have no chance of being of 
commercial interest.

In conventional communication systems, it is usual to con-
sider an equalizer in the receiver to mitigate the ISI introduced 
by the channel [16–18]. Equalization schemes applied to chaotic 
synchronization have been proposed in the literature for different 
approaches of message encoding (see, e.g., [19–24] and their ref-
erences). To the best of our knowledge, only [24] considers the 
equalization in the discrete-time domain applied to a Wu and 
Chua’s chaotic synchronization scheme, in which an encoded mes-
sage is fed back into the chaotic signal generator (CSG). The main 
drawback of the scheme of [24] is that it uses the Ikeda map to 
encode the message and the encoded signal may not be chaotic. 
This occurs because the Ikeda map presents a stable fixed point 
besides the chaotic attractor [6].

In this paper, we propose an adaptive equalizer for a chaotic 
synchronization scheme in a master–slave configuration using the 
Hénon map, which ensures that the transmitted signal is in fact 
chaotic, as we shall see. As in [24], the chaotic synchronization 
scheme considered here feeds back the encoded message into the 
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Fig. 1. Chaotic synchronization system with an adaptive equalizer.
CSG. As this situation is a discrete-time model for the practical set 
described in [4], we consider it as a relevant scenario.

The paper is organized as follows. In Section 2, we describe 
a discrete-time version of the Wu and Chua’s chaotic synchro-
nization [3,10], which besides a noisy and dispersive channel in-
cludes an adaptive equalizer. In Section 3, we modify the normal-
ized least-mean-squares (NLMS) algorithm to take into account the 
Hénon map. The interval of the step-size to ensure a local and 
weak stability of the proposed algorithm is obtained in Section 4. 
Section 5 presents simulation results of a communication system 
based on this scheme and, in Section 6, we draft the conclusions. 
Although we consider the Hénon map in this paper, our scheme 
can be straightforwardly extended to other chaotic maps.

2. Problem formulation

Fig. 1 shows the chaotic synchronization problem under consid-
eration. It is based in a discrete-time version of the one proposed 
in [3]. In our scheme, a binary signal m(n) ∈ {−1, +1} is encoded 
by using the first component of the master state vector x(n), via a 
coding function

s(n) = c
(
x1(n),m(n)

)
, (1)

so that m(n) can be recovered using the inverse function with re-
spect to m(n), i.e.,

m(n) = c−1(x1(n), s(n)
)
. (2)

Then, the signal s(n) is fed back into the chaotic signal generator 
(CSG) and transmitted through a communication channel, whose 
model is constituted by a transfer function H(z) and additive white 
Gaussian noise (AWGN). We assume an M-tap adaptive equalizer, 
with input regressor vector

r(n) = [
r(n) r(n − 1) · · · r(n − M + 1)

]T

and output

ŝ(n) = rT (n)w(n − 1),

where (·)T indicates transposition and

w(n − 1) = [
w0(n − 1) w1(n − 1) · · · w M−1(n − 1)

]T

is the equalizer weight vector. The equalizer must mitigate the in-
tersymbol interference introduced by the channel and recover the 
encoded signal s(n) with an unavoidable delay of Δ samples.

If transmitter and receiver identically synchronize [25], i.e., 
if x̂(n) → x(n), then using the output of the equalizer and the es-
timate of x1(n), m(n) can be decoded via

m̂(n) � c−1(x̂1(n), ŝ(n)
) → m(n), (3)
Fig. 2. Receiver of the chaotic communication system with an adaptive equalizer in 
the decision-directed mode.

where x̂1(n) is the first component of the slave state vector x̂(n). 
Thus, the estimation error

e(n) = m(n − Δ) − m̂(n) (4)

can be used as an equalization criterion. Once identical master–
slave synchronization is obtained, m(n) can be used to transmit 
information between the two systems, being m̂(n) the decoded bi-
nary message.

We are assuming that there is a training sequence {m(n − Δ)}, 
known in advance at the receiver. In this case, the equalizer works 
in the training mode and updates its coefficients in a supervised 
manner, using the estimation error in conjunction with an adap-
tive algorithm. If we intend to transmit information using m(n), 
the receiver will not have access to {m(n − Δ)} and this sequence 
will be replaced by the output of the decision device, as shown in 
Fig. 2. In this case, the equalizer works in the so-called decision-
directed mode. Due to variations in the communication channel, 
the switching between these two modes must occur whenever the 
mean-squared error achieves a predefined threshold [16–18]. Al-
though this switching occurs in the practice, we only consider the 
training mode in the simulations of Section 5.

In this paper, the Hénon map [26] is used in both CSGs of Fig. 1. 
Therefore, the equations governing the global dynamical system 
can be written as

x(n + 1) = Ax(n) + b + f
(
s(n)

)
, (5)

x̂(n + 1) = Ax̂(n) + b + f
(
ŝ(n)

)
, (6)

where x(n) � [x1(n) x2(n)]T , x̂(n) � [x̂1(n) x̂2(n)]T ,

A =
[

0 β

1 0

]
, b =

[
α
0

]
, f

(
s(n)

) =
[ −s2(n)

0

]
, (7)

being β and α real constant parameters of the map.
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In [27] it was shown that, under ideal channel conditions, i.e., 
when r(n) ≡ s(n) and the equalizer is an identity system, iden-
tical synchronization between master and slave is obtained if all 
the eigenvalues of A are inside the unit circle. Since the eigenval-
ues of A are ±√

β , we conclude that for |β| < 1, master and slave 
identically synchronize under ideal conditions. Therefore, from (3), 
m̂(n) → m(n).

As coding function, we consider [10,24]

s(n) = c
(
x1(n),m(n)

) = x1(n) · m(n) (8)

which leads to the decoding

m̂(n) = ŝ(n)

x̂1(n)
. (9)

This particular choice associated to the Hénon map has an inter-
esting property: for a binary polar message (m(n) = ±1), we can 
observe from (8) that s2(n) = x2

1(n). Thus, (5) does not depend 
on m(n) and the message does not disturb the Hénon CSGs. This 
means that, the transmitted signal is in fact chaotic as long as the 
signals generated by the CSGs are chaotic. For instance, this is not 
the case in [24], where the Ikeda map was used or in [27], where 
an additive coding function was employed instead of the multi-
plicative one as that of (8).

3. The chaotic NLMS algorithm

Stochastic-gradient algorithms update the coefficients of an 
adaptive equalizer using the following equation

w(n) = w(n − 1) − ρ∇w Ĵ (n), (10)

where ρ is a step size and ∇w Ĵ (n) is the gradient vector of the 
instantaneous cost-function Ĵ (n) to be minimized. Using (10), the 
coefficient vector w(n − 1) is updated in the direction opposite to 
that of the gradient of Ĵ (n), which in turn is a function of the esti-
mation error. Different functions lead to algorithms with different 
properties as convergence rate, computational cost, tracking capa-
bility, among others [17,18]. The squared error is the cost-function 
most used in the literature and leads to the popular LMS algorithm.

In order to obtain a version of the LMS algorithm to adapt the 
equalizer in the scheme of Fig. 1, we begin by defining the follow-
ing instantaneous cost-function

Ĵ (n) = e2(n) = [
m(n − Δ) − m̂(n)

]2
. (11)

Computing the gradient of Ĵ (n) with respect to the coefficient vec-
tor w(n − 1), we obtain

∇w Ĵ (n) = 2e(n)
∂e(n)

∂w(n − 1)
= −2e(n)

∂m̂(n)

∂w(n − 1)
. (12)

Assuming that x̂1(n) �= 0 for all n and taking into account the 
equalizer in the scheme of Fig. 1, (3) can be rewritten as

m̂(n) = ŝ(n)

x̂1(n)
= rT (n)w(n − 1)

x̂1(n)
. (13)

Using (13) and assuming that x̂1(n) does not depend on w(n − 1), 
we arrive at

∇w Ĵ (n) = −2
e(n)

x̂1(n)

∂ ŝ(n)

∂w(n − 1)
= −2

e(n)

x̂1(n)
r(n). (14)

Thus, replacing (14) in (10) and considering ρ = μ as step size, 
we arrive at the update equation of the chaotic1 LMS (cLMS) algo-
rithm, given by

1 We use the term chaotic for the algorithms derived here only for distinguishing 
them from the original versions of LMS and NLMS algorithms (see, e.g., [18]). The 
use of this term does not imply a chaotic behavior of the algorithms.
w(n) = w(n − 1) + μ
e(n)

x̂1(n)
r(n). (15)

It is well known in the adaptive filtering literature that one 
problem with the LMS algorithm is how to choose the step-size μ
to enable a high convergence rate, provide an acceptable steady-
state mean-square error, and even ensure its stability [17,18]. 
Variable step-size algorithms make this choice in a more proper 
manner and may outperform their non-normalized counterparts, 
mainly when the statistics of the input signals change quickly. This 
is the case of the normalized LMS algorithm [17,18]. Therefore, 
a normalized version of the cLMS algorithm is more adequate to 
update the coefficients of the equalizer in the scheme of Fig. 1.

To obtain a normalized version of cLMS, we first define the 
a posteriori error as

ep(n) = m(n − Δ) − rT (n)w(n)

x̂1(n)
. (16)

Using (15), ep(n) can be rewritten as

ep(n) = m(n − Δ) −
rT (n)[w(n − 1) + μ e(n)

x̂1(n)
r(n)]

x̂1(n)

= e(n)

[
1 − μ

‖r(n)‖2

x̂2
1(n)

]
. (17)

To enforce ep(n) = 0 at each iteration n, we must select μ(n) =
x̂2

1(n)/‖r(n)‖2. Introducing a fixed step-size μ̃ to control the rate 
of convergence and a regularization factor δ to prevent division 
by zero in μ(n), and replacing the resulting step size in (15), we 
obtain the update equation of the chaotic NLMS (cNLMS) algo-
rithm, i.e.,

w(n) = w(n − 1) + μ̃

δ + ‖r(n)‖2
x̂1(n)e(n)r(n). (18)

Note that cNLMS depends not only on the estimation error e(n), 
but also on x̂1(n). Since x̂1(n) depends nonlinearly on ŝ(n − 1), 
cNLMS is a nonlinear version of NLMS. Moreover, the synchroniza-
tion between master and slave in chaotic communication system 
depends on the mitigation of the intersymbol interference, which 
is the role played by the equalizer.

We prevent division by a value close to zero in the computation 
of m̂(n), by making

m̂(n) = sign
[
ŝ(n)x̂1(n)

]
when |x̂1(n)| < ε, where ε is a small positive constant and

sign[x] =
{ −1, x < 0

1, x ≥ 0
.

In order to ensure the stability of the algorithm and to avoid 
wrong estimates when x̂1(n) is too large, we introduce a bound for 
x̂1(n), i.e., if |x̂1(n)| > X , we simply make x̂1(n) ← X sign[x̂1(n)], 
where X is a positive constant. We do not observe performance 
degradation in different simulation scenarios, when we used X =
100. The proposed algorithm is summarized in Table 1.

4. Stability conditions

Using (13), the update equation of cNLMS can be rewritten as

w(n) =
[

I − μ̃

δ + ‖r(n)‖2
r(n)rT (n)

]
w(n − 1)

+ μ̃x̂1(n)m(n)
r(n)

2
, (19)
δ + ‖r(n)‖
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Table 1
Summary of the cNLMS algorithm.

Initialize the algorithm by setting:
w(−1) = 0, x̂(0) = [0.1 −0.1]T

A =
[

0 β

1 0

]
, b =

[
α
0

]

α,β: parameters of the Hénon map
δ, ε: small positive constants
X: large positive constant
0 < μ̃ < 2

For n = 0,1,2,3, . . . , compute:
ŝ(n) = rT (n)w(n − 1)

if |x̂1(n)| > X
x̂1(n) ← X sign[x̂1(n)]

end
if |x̂1(n)| ≤ ε

m̂(n) = sign[ŝ(n)x̂1(n)]
else

m̂(n) = ŝ(n)

x̂1(n)
end
e(n) = m(n − Δ) − m̂(n)

w(n) = w(n − 1) + μ̃

δ + ‖r(n)‖2
x̂1(n)e(n)r(n)

x̂(n + 1) = Ax̂(n) + b +
[ −ŝ2(n)

0

]

end

where I is the identity matrix with dimensions M × M . The ma-
trix between brackets has M − 1 eigenvalues equal to one and one 
eigenvalue equal to

λ1 = 1 − μ̃
rT (n)r(n)

δ + ‖r(n)‖2
.

Noticing that

0 ≤ rT (n)r(n)

δ + ‖r(n)‖2
< 1,

and for ‖r(n)‖2 � δ, rT (n)r(n)/(δ + ‖r(n)‖2) ≈ 1, in order to en-
sure |λ1| < 1, we must choose μ̃ in the interval

0 < μ̃ < 2. (20)

The norm of the second term of the r.h.s. of (19) is bounded, i.e.,

0 ≤ μ̃
∣∣x̂1(n)

∣∣∣∣m(n)
∣∣ ‖r(n)‖
δ + ‖r(n)‖2

≤ μ̃X

√
δ

2δ
< ∞.

Therefore, using (deterministic) exponential stability results for the 
LMS algorithm [28], we conclude that cNLMS is stable in a robust 
sense if μ̃ is chosen in the interval (20).

5. Simulation results

In order to verify the behavior of the cNLMS algorithm, we have 
performed simulations assuming the Hénon map with α = 1.4 and 
β = 0.3. The state vectors of (5) and (6) were initialized as x(0) = 0
and x̂(0) = [0.1 −0.1]T , respectively. Other initializations also al-
low equally good results in terms of synchronization when the 
equalizer mitigates reasonably well the intersymbol interference. 
Furthermore, the equalizers were initialized as w(0) = 0 and, for 
comparison, we also consider the system of Fig. 1 without equal-
izer, in which ŝ(n) = r(n).

As performance measure, we consider the excess mean-square 
error (EMSE) [17,18], defined as

EMSE � E
{

e2
a(n)

}
, (21)

where E{·} represents the expectation operation,
ea(n) = rT (n)
[
wo − w(n − 1)

]
,

and wo is the Wiener solution [17,18], computed as

wo = R−1p,

being R = E{r(n)rT (n)} the autocorrelation matrix of the input sig-
nal of the equalizer and p = E{s(n − Δ)r(n)}, the cross-correlation 
vector between the input signal and the sequence s(n − Δ). The 
Wiener solution is known as optimal linear solution and depends 
on the delay Δ. Since most adaptive filters converge in the mean 
to the Wiener solution, it is considered as a benchmark for the 
cNLMS algorithm. The EMSE measures how much E{ Ĵ (n)} exceeds 
its minimum value due to adaptation. If the algorithm found the 
Wiener solution wo at each time instant, the EMSE would be zero. 
Since the actual filter coefficients are never exactly equal to the 
optimum values, the EMSE measures the effect of this difference 
on the error variance [17,18].

Another performance measure considered in this paper is the 
bit error rate (BER) [16]. BER curves were estimated after the 
convergence of cNLMS and counting the number of errors when 
comparing m(n − Δ) with the sequence obtained at the output of 
a decision device applied to m̂(n). We disregarded 3 × 105 bits due 
to the initial convergence and used 106 bits in to computation of 
the BER. In this case, the BER obtained with the Wiener solution is 
considered as benchmark for the proposed scheme.

We first assume that m(n) ≡ 1 and, consequently, s(n) = x1(n). 
In this case, the output of the communication channel is assumed 
to be related to its input by the following difference equation

r(n) = s(n) − 0.6r(n − 1),

which corresponds to the following transfer function

H1(z) = 1

1 + 0.6z−1
.

Since H1(z) is an infinite impulse response (IIR) channel and the 
equalizer is assumed to be a finite impulse response (FIR) filter, 
the perfect equalization is possible in the absence of noise. In this 
simple case,

wo = [1 0.6]T . (22)

Although there is no transmission of information between master 
and slave in this situation, this simulation shows that the equalizer 
plays an essential role to enable the synchronization of the map as 
we shall see next.

The effect of the channel H1(z) can be observed by comparing 
the reconstructed attractors, using s(n) and r(n). Due to the chan-
nel effect, the dynamical characteristics of the signal s(n) = x1(n)

are lost, as observed by comparing the attractors of Figs. 3(a) 
and 3(b). In Fig. 3(c), it is possible to notice that the equalizer is 
able to eliminate the channel effect, recovering an attractor similar 
to the original one.

The sequence m̂(n) estimated by the cNLMS equalizer is shown 
in Fig. 4(b). The average of the two coefficients and the EMSE along 
the iterations, estimated by an ensemble-average of 1000 runs, 
are shown respectively in Figs. 4(c) and (e). We can observe that 
cNLMS coefficients approach to wo of (22), as shown by the dashed 
lines in Fig. 4(c). Therefore, the equalizer is working as expected 
since this solution mitigates the intersymbol interference, enabling 
the synchronization of the Hénon map, which can be confirmed by 
means of Fig. 4(d), since for n > 2000 the graphic of x1(n) vs. x̂1(n)

becomes close to a line (blue dots in the figure). There is no syn-
chronization in the case with no equalizer as shown in Fig. 4(a).

In the following simulations, we assume the transmission of a 
binary equiprobable random sequence m(n) ∈ {−1, 1}. We consider 
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Fig. 3. Reconstructed attractor using the: (a) transmitted, (b) received and (c) recov-
ered with cNLMS signals in the case m(n) ≡ 1; M = 2; Δ = 0; H1(z).

Fig. 4. Recovered sequence with (a) no equalizer and (b) one run of cNLMS (μ =
0.005, δ = 10−5, ε = 0.1); (c) average of the coefficients of cNLMS and Wiener so-
lution (dashed lines); (d) x1(n) vs. x̂1(n): red dots for 0 < n ≤ 2000 and blue dots 
for n > 2000 (e) estimated EMSE; average of 1000 runs; M = 2; Δ = 0; H1(z). (For 
interpretation of the references to color in this figure legend, the reader is referred 
to the web version of this article.)

again Channel H1(z) with Δ = 0 and absence of noise. The se-
quence estimated via the cNLMS equalizer and the error after the 
decision device (both for one realization) are shown in Figs. 5(b) 
and (c). The average of the two coefficients and the EMSE along 
the iterations, estimated by an ensemble-average of 1000 runs, are 
shown respectively in Figs. 5(d) and (e). Again, cNLMS approaches 
to wo of (22) and the equalizer recovers properly the transmitted 
sequence, which can be confirmed through the errors after the de-
cision device shown in Fig. 5(c). The communication is completely 
lost in the case with no equalizer as shown in Fig. 5(a).

The effect of the communication channel can also be observed 
by means of the reconstructed attractors using the transmitted and 
received signals. They are shown in Figs. 6(a) and 6(b). Due to the 
Fig. 5. Recovered sequence with (a) no equalizer and (b) cNLMS (μ = 0.005, δ =
10−5, ε = 0.1); (c) error after decision; (d) average of the coefficients of cNLMS and 
Wiener solution (dashed lines); (e) estimated EMSE; average of 1000 runs; M = 2; 
Δ = 0; H1(z).

Fig. 6. Reconstructed attractor using the: (a) transmitted, (b) received and (c) recov-
ered with cNLMS signals in the case of m(n) binary equiprobable random sequence 
(parameters as in Fig. 5).

channel effect, the dynamical characteristics of the transmitted sig-
nal are lost, as observed in Fig. 6(b). In Fig. 6(c), it is possible to 
notice that the equalizer is able to eliminate the channel effect, 
recovering again an attractor similar to the original one.

Next, we verify the behavior of the equalizer in case of an 
abrupt variation in the channel. For this, we consider the follow-
ing noiseless scenario: initially, s(n) is transmitted through the real 
part of the telephonic channel of [29], so that r(n) is given by

r(n) = −0.005s(n) + 0.009s(n − 1) − 0.024s(n − 2)

+ 0.850s(n − 3) − 0.218s(n − 4) + 0.050s(n − 5)

− 0.016s(n − 6).

Then, at n = 5 × 103, this channel is abruptly changed to the imag-
inary part of the same telephonic channel, i.e.,
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Fig. 7. Recovered sequence with (a) no equalizer and (b) cNLMS (μ = 0.2, δ = 10−5, 
ε = 0.1); (c) error after decision; (d) average of the coefficients of cNLMS and 
Wiener solution (dashed lines); (e) estimated EMSE; average of 1000 runs; M = 25; 
Δ = 12; abrupt time-varying channel scenario.

r(n) = −0.004s(n) + 0.030s(n − 1) − 0.104s(n − 2)

+ 0.520s(n − 3) + 0.273s(n − 4) − 0.074s(n − 5)

+ 0.020s(n − 6).

For both channels, we assumed an equalizer with M = 25 coeffi-
cients and a delay of Δ = 12 samples.

The results for this scenario are shown in Fig. 7. As it can be 
noticed, cNLMS converges to the Wiener solution [18], whose co-
efficients are shown as dashed lines in Fig. 7(d). It is important 
to notice that cNLMS is able to track the abrupt variation in the 
channel, achieving the steady-state again. The equalizer plays an 
important role to mitigate the intersymbol interference since the 
performance of the system without equalizer is much worse as 
observed in Fig. 7(a).

To verify the behavior of the equalizer with a time-varying 
channel, we considered the transmission of s(n) through the noise-
less channel, given by

r(n) = h0(n)s(n) + s(n − 1) + h0(n)s(n − 2), (23)

in which h0(n) varies linearly from 0.1 to 0.3 at n = 0 and 
n = 3 × 103, respectively. The results for this scenario are shown 
in Fig. 8. As it can be noticed, the equalizer is able to adapt as 
the channel varies, obtaining a good estimate of the instantaneous 
Wiener solution, shown by the dashed lines of Fig. 8(d).

To show the sensitivity of chaotic synchronization to the inter-
symbol interference (ISI), we obtain BER curves of the system for 
the channel given by (23) in the absence of noise with M = 21 and 
Δ = 11. They are shown in Fig. 9. It is important to remark that in 
the case with no equalizer, the delay is due only to the channel. 
Therefore, we compared the recovered sequence with m(n − Δ), 
assuming Δ = 1 in this case. The smaller the value of h0 the lower 
the intersymbol interference introduced by the channel. We can 
observe that cNLMS eliminates approximately the channel effects, 
achieving a quasi-perfect equalization (BER < 10−5) for 0 ≤ h0 ≤
Fig. 8. Recovered sequence with (a) no equalizer and (b) cNLMS (μ = 0.2, δ = 10−5, 
ε = 0.1); (c) error after decision; (d) average of the coefficients of cNLMS and 
Wiener solution (dashed lines); (e) estimated EMSE; average of 1000 runs; M = 15; 
Δ = 8; smooth time-varying channel scenario.

Fig. 9. Bit error rate for the channel (23) as function of h0 in the absence of noise; 
cNLMS (μ̃ = 0.05, δ = 10−5, ε = 0.1).

0.15, whereas the Wiener solution provides a quasi-perfect equal-
ization for 0 ≤ h0 ≤ 0.25. The distance between cNLMS and Wiener 
is due to the step size (μ = 0.05) considered in the simulations. It 
is well known that there is a tradeoff in all adaptive algorithms, 
which states that the smaller the step size, the smaller the steady-
state EMSE (and BER), and consequently the closer the algorithm to 
the Wiener solution [17,18]. However, a too small step-size causes 
a low convergence and the algorithm may not be able to track the 
variations in the channel. Both solutions outperform the case with 
no equalizer for 0 < h0 < 0.5. In the case of h0 = 0, we have the 
ideal channel and the equalizer is not necessary. Note that a mi-
nor channel imperfection (e.g., h0 = 0.05) is enough to completely 
lose the transmitted message and the equalizer is essential to per-
mit communication. In the case of h0 = 0.5, the channel presents a 
deep spectral null and instead of a linear transversal equalizer, we 
should use a decision feedback equalizer to eliminate the channel 
effects [16,18].

To show also the sensitivity of chaotic synchronization to noise, 
we added white Gaussian noise to the signal at the output of the 
channel (23) in order to obtain a signal-to-noise ratio (SNR) of 
60 dB. The BER curves for this case are shown in Fig. 10. Since 
the equalizer only tries to eliminate the ISI, the bit error rates are 
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Fig. 10. Bit error rate for the channel (23) as function of h0 with SNR = 60 dB; 
cNLMS (μ̃ = 0.05, δ = 10−5, ε = 0.1).

Fig. 11. Bit error rate for the non-dispersive AWGN channel and for the channel (23)
with h0 = 0.25 as a function of SNR; cNLMS (μ̃ = 0.05, δ = 10−5, ε = 0.1).

higher that those of Fig. 9, mainly when the ISI is low. Even for the 
ideal channel (h0 = 0), the perfect recovery of the message is not 
possible since we have a BER of approximately 8 × 10−4. Assuming 
again the channel (23) with h0(n) = 0.25, we obtain BER curves 
as a function of SNR as shown in Fig. 11. For comparison, we also 
include the BER curve for the non-dispersive AWGN channel, ob-
tained with the system of Fig. 1 without equalizer. This BER curve 
works as a benchmark for the equalization in a noisy and disper-
sive environment. The closer the BER obtained in a dispersive and 
noisy channel to the BER of the AWGN channel, the more efficient 
in terms of mitigation of ISI the equalizer is. We can observe that 
the BER obtained with the cNLMS algorithm is close to that of the 
Wiener solution, and both are slightly outperformed by the AWGN 
case. Again, the absence of the equalizer in a dispersive channel 
leads to prohibitive error rates. It is important to emphasize that 
to permit chaotic communications using the system of Fig. 1 in the 
presence of noise, the transmitter should encode the signal s(n)

using an error-correcting code prior to transmission [16].

6. Conclusion

In this paper, we proposed a supervised equalization scheme 
based on the NLMS algorithm for a master–slave synchronization 
scheme using maps. Simulations of different scenarios show that 
the proposed algorithm can successfully permit chaotic synchro-
nization for non-ideal channels. For low signal-to-noise ratios, it is 
essential to include error-correcting codes in the transmitter, since 
the equalizer only deals with intersymbol interference. Although 
we considered the Hénon map in the simulations, the cNLMS al-
gorithm can be modified to be used with other chaotic maps, e.g., 
the Ikeda map [24]. As an example of application, the proposed 
scheme was used to recover a binary polar sequence in a chaos-
based digital communication system.
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