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ABSTRACT

Many communication systems based on the synchronism of

chaotic systems have been proposed as an alternative spread

spectrum modulation that improves the level of privacy in

data transmission. However, due to the lack of robustness of

chaos synchronization, even minor channel imperfections are

enough to hinder communication. In this paper, we propose

an adaptive equalization scheme to recover a binary sequence

modulated by a chaotic signal, which in turn is generated by

Ikeda maps. The proposed scheme employs the normalized

least-mean-squares (NLMS) algorithm with a modification to

enable chaotic synchronization even when the communica-

tion channel is not ideal. Simulation results show that the

modified NLMS can successfully equalize the channel in dif-

ferent scenarios.

Index Terms— Chaotic synchronization, chaotic com-

munication system, adaptive equalizers, LMS algorithm.

1. INTRODUCTION

In the last two decades, the feasibility of communication sys-

tems based on the synchronism of chaotic systems has been

theoretically and experimentally investigated (e.g. [1–4]). A

chaotic system deterministically generates trajectories in the

state space that are aperiodic, limited and present sensitive

dependence on initial conditions [5]. Therefore, chaotic sig-

nals have been proposed as broadband information carriers

and may yield the properties of spread spectrum modulations,

as multipath and jamming immunity [6]. Besides, they have

the potential of providing high level of privacy in data trans-

mission [7, 8].

Recently, some works with a practical approach using

chaos in the signal level have appeared, mainly in the optical

communication domain (see, e.g., [7]). This is somewhat

natural since chaotic generators can be easily created us-

ing the intrinsic nonlinear properties of lasers, avoiding the

need of scrambling. This fact was exploited in [7], where

a high-speed long-distance communication system based on

chaos synchronization was demonstrated over a commercial

fibre-optic link. In this system, it was possible to obtain bit

This work was partly supported by FAPESP under Grant 2012/24835-1

and by CNPq under Grants 303926/2010-4 and 302423/2011-7.

error ratios next to the usually expected in a conventional

communication system. However, it is important to note that

the dispersion was compensated in a non-adaptive way.

The continuous-time system of [7] considers a chaotic

modulation in which the message is fed back into the chaotic

signal generator (CSG). In this context, it is common to model

the CSG using variants of the Ikeda map. This map can be en-

visioned as arising from a string of light pulses impinging on

a partially transmitting mirror of a ring cavity with a nonlinear

dispersive medium [5, 9].

One of the worst drawbacks in chaos-based communi-

cation systems is the lack of robustness of chaotic synchro-

nization with respect to noise and intersymbol interference

(ISI) introduced by the channel. Even minor noise levels

or simple linear distortions are enough to hinder communi-

cation [10, 11]. Many chaos-based communication systems

tend to present prohibitive bit error rates in nonideal channels

when compared to their conventional counterparts. Therefore,

many approaches are based on the assumption of a rather ideal

channel with a high signal-to-noise ratio (see, e.g., [4, 8, 12]

and their references).

To mitigate the ISI introduced by the channel, it is usual

to consider an equalizer in the receiver. Equalization schemes

applied to chaotic signals have been proposed in the literature

for different approaches of message encoding (see, e.g., [13–

17] and their references). However, we are not aware of works

on equalization applied in the discrete-time domain for the

chaotic modulation which feeds back the message into the

CSG as in [7].

In this paper, we propose an adaptive equalization scheme

for a discrete-time chaos-based communication system in

which the message is fed back into the CSG. As CSG, we

assume a variant of the Ikeda map. The paper is organized as

follows. In Section 2, we describe a discrete-time version of

the Wu and Chua’s chaotic modulation [12], which, besides a

noisy and dispersive channel, includes an adaptive equalizer.

The synchronization issues are discussed in Section 3. A nor-

malized least-mean-squares (NLMS) type algorithm applied

to chaotic modulation is derived in Section 4. In Section 5,

we obtain the interval of the step-size to ensure a local and

weak stability of the proposed algorithm. Section 6 presents

simulation results and in Section 7, we draft the conclusions.
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2. PROBLEM FORMULATION

Fig. 1 shows the chaotic communication system under consid-

eration, which is a discrete-time version of the one proposed

by Wu and Chua [12]. In this scheme, the binary information

signal m(n) ∈ {−1, +1} is encoded by using the second

component of the state vector x(n), i.e., s(n) = m(n)x2(n).
Then, the signal s(n) is fed back and transmitted through

a communication channel, whose model is constituted by a

transfer function H(z) and additive white Gaussian noise

(AWGN). We assume an M -tap FIR adaptive equalizer, with

input regressor vector r(n) = [ r(n) r(n−1) ··· r(n−M+1) ]T

and output ŝ(n)=r
T (n)w(n−1), where (·)T indicates trans-

position and w(n − 1) is the equalizer weight vector. The

equalizer must mitigate the intersymbol interference intro-

duced by the channel and recover the encoded signal s(n)
with a delay of ∆ samples. If transmitter and receiver com-

pletely synchronize [18], i.e., if x̂(n) → x(n), then using

the output of the equalizer and the estimate of x2(n), the

information signal can be decoded via

m̂(n) , ŝ(n)/x̂2(n), (1)

where x̂2(n) is the second component of the state vector x̂(n).
We also assume that there is a training sequence so that the

error e(n) = m(n−∆)− m̂(n) is used to adapt the equalizer

coefficients in a supervised manner.

CSG

CSG

(·)−1

Transmitter Receiver

channel equalizer

m(n)

m̂(n)

m(n−∆)

s(n)

e(n)

ŝ(n)r(n)

x̂2(n)

x2(n)

x(n)
x̂(n)

z−∆

Fig. 1. Chaotic communication system with an adaptive equalizer.

In this paper, the Ikeda map is used in both CSGs in Fig. 1.

Therefore, the equations governing the global dynamical sys-

tem have the following form [5]

x(n) =At(n)x(n− 1) + [R 0 ]T , (2)

x̂(n) =Ar (n) x̂(n− 1) + [R 0 ]T , (3)

where x(n) , [x1(n) x2(n)]
T

, x̂(n) , [x̂1(n) x̂2(n)]
T

, and

R is a constant, parameter of the Ikeda map. In the CSG of

the transmitter, we have the matrix At(n) given by

At(n) = C2

[
cos θn − sin θn

sin θn cos θn

] [
1 0
0 m(n−1)

]
, (4)

where

θn = C1 −
C3

1 + x2
1(n− 1) + x2

2(n− 1)m2(n− 1)
, (5)

Ci, i = 1, 2, 3 are constant parameters of the Ikeda map and

m2(n− 1) = 1. In the CSG of the receiver, we have

Ar(n) = C2

[
cos θ̂n − sin θ̂n

sin θ̂n cos θ̂n

] [
1 0
0 m̂(n−1)

]
, (6)

where

θ̂n = C1 −
C3

1 + x̂2
1(n− 1) + x̂2

2(n− 1)m̂2(n− 1)
. (7)

The system described by (2) is autonomous and is called mas-

ter, whereas the one described by (3) depends on x(n − 1)
and is called slave. Notice that m̂(n − 1), defined in (1), de-

pends on the master system, so the matrix Ar also depends

on x(n− 1).

3. COMPLETE SYNCHRONIZATION FOR AN

IDEAL CHANNEL

The synchronization error is defined as ξ(n) , x̂(n)− x(n),
which can be rewritten, using (2) and (3), as

ξ(n) = [Ar(n)−At(n)] ξ(n− 1). (8)

Master and slave are said completely synchronized if ξ(n)→0

as n grows [18]. Consequently, they synchronize completely

if the eigenvalues of [Ar(n)−At(n)] satisfy |λi(n)| < 1,
i = 1, 2, for all n [19].

To prove theoretically that |λi(n)| < 1 for all n is not

a simple task and some assumptions on the transmitted and

recovered message are necessary, even when the channel is

ideal. This occurs since in the Ikeda map At(n) and Ar(n)
depend on m(n − 1) and m̂(n − 1), respectively. Therefore,

we show next some numerical simulations to illustrate that the

synchronization between master and slave may be achieved

for an ideal channel, considering the usual parameters for the

Ikeda map: C1 = 0.4, C2 = 0.9, C3 = 6, and R = 1 [5].

Fig. 2 shows the maximum absolute value of the eigenval-

ues as a function of n in two situations: for m(n) = 1 and for

a binary equiprobable random message, m(n) ∈ {−1, +1}.
As it can be noticed, we have synchronization for both cases,

since maxi |λi(n)| < 1, ∀n for the two cases considered. Fur-

thermore, the largest Lyapunov exponent when m(n) = 1
is approximately 0.507, which means that s(n) is chaotic, at

least in this case [5].

 

 
m(n)=1

m(n)∈{±1}

n

0
0 10 20 30

0.15

0.05

0.1

m
ax

i
|λ

i
(n

)|

Fig. 2. Maximum absolute value of the eigenvalues of

[Ar(n)−At(n)] along the iterations; Ikeda map (x(0) = 0;

x̂(0) = [0.1 − 0.1]T ; C1 = 0.4, C2 = 0.9, C3 = 6, and R = 1).

4. THE CHAOTIC NLMS ALGORITHM

To obtain a stochastic gradient algorithm to adapt the equal-

izer in the scheme of Fig. 1, we define the following instanta-
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neous cost-function

Ĵ(n) = e2(n) = [m(n−∆)− m̂(n)]
2
. (9)

Computing the gradient of Ĵ(n) with respect to the coefficient

vector w(n− 1), we obtain

∇wĴ(n) = 2e(n)
∂e(n)

∂w(n− 1)
= −2e(n)

∂m̂(n)

∂w(n− 1)
. (10)

Assuming that x̂2(n) 6= 0 for all n and taking into account

the equalizer in the scheme of Fig. 1, (1) can be rewritten as

m̂(n) =
ŝ(n)

x̂2(n)
=

r
T (n)w(n− 1)

x̂2(n)
. (11)

Using (11) and recalling that x̂2(n) depends only on x̂(n−1)
and ŝ(n − 1), which in turn do not depend on w(n − 1), we

arrive at

∇wĴ(n) = −2
e(n)

x̂2(n)

∂ŝ(n)

∂w(n)
= −2

e(n)

x̂2(n)
r(n). (12)

Thus, the update equation of the chaotic1 LMS (cLMS) algo-

rithm is given by

w(n) = w(n− 1) + µ
e(n)

x̂2(n)
r(n). (13)

To obtain a normalized version of cLMS, we first define

the a posteriori error as

ep(n) = m(n−∆)− r
T (n)w(n)

x̂2(n)
. (14)

Using (13), ep(n) can be rewritten as

ep(n) = m(n−∆)−
r

T (n)

[
w(n− 1) + µ

e(n)

x̂2(n)
r(n)

]

x̂2(n)

= e(n)

[
1− µ

‖r(n)‖2
x̂2

2(n)

]
. (15)

To enforce ep(n) = 0 at each iteration n, we must select

µ(n) = x̂2
2(n)/‖r(n)‖2. Introducing a fixed step-size µ̃ to

control the rate of convergence and a regularization factor δ
to prevent division by zero in µ(n), and replacing the resulting

step size in (13), we obtain the update equation of the cNLMS

algorithm, i.e.,

w(n) = w(n− 1) +
µ̃

δ + ‖r(n)‖2 x̂2(n)e(n)r(n). (16)

Note that cNLMS depends not only on the estimation er-

ror e(n), but also on x̂2(n). Since x̂2(n) depends nonlinearly

1We use the term chaotic for the algorithms derived here only for dis-

tinguishing them from the original versions of LMS and NLMS algorithms

(see, e.g., [19]). The use of this term does not imply a chaotic behavior of the

algorithms.

on ŝ(n), cNLMS is a nonlinear version of NLMS. Moreover,

the synchronization between master and slave in chaotic com-

munication system depends on the mitigation of the intersym-

bol interference, which is the role played by the equalizer.

We prevent division by a value close to zero in the com-

putation of m̂(n), by making m̂(n) = sign[ ŝ(n) x̂2(n) ]
when |x̂2(n)| < ε, where ε is a small positive constant and

sign[x] = −1 if x < 0 or sign[x] = 1 if x ≥ 0.

In order to ensure the stability of the algorithm and to

avoid wrong estimates when x̂2(n) is too large, we introduce

a bound for x̂2(n), i.e., if |x̂2(n)| > X , we simply make

x̂2(n) ← Xsign[x̂2(n)], where X is a positive constant. We

do not observe performance degradation in different simula-

tion scenarios, when we used X = 100. The proposed algo-

rithm is summarized in Table 1.

Table 1. Summary of the cNLMS algorithm.

Initialize the algorithm by setting:

w(−1) = 0, x̂(0) = [ 0.1 − 0.1 ]T , b = [R 0 ]
T

δ, ε: small positive constants; X: large positive constant

For n = 0, 1, 2, 3 . . . , compute:

ŝ(n) = r
T (n)w(n− 1)

if |x̂2(n)| > X

x̂2(n)← Xsign[ x̂2(n) ]
end

if |x̂2(n)| ≤ ε

m̂(n) = sign[ ŝ(n) x̂2(n) ]
else

m̂(n) =
ŝ(n)

x̂2(n)
end

e(n) = m(n−∆)− m̂(n)

w(n) = w(n− 1) +
µ̃c

δ + ‖r(n)‖2 x̂2(n)e(n)r(n)

θ̂n+1 = C1 −
C3

1 + x̂2
1(n) + x̂2

2(n)m̂2(n)

Ar(n+1) = C2

[
cos θ̂n+1 − sin θ̂n+1

sin θ̂n+1 cos θ̂n+1

][
1 0
0 m̂(n)

]

x̂(n + 1) = Ar (n + 1) x̂(n) + b

end

5. STABILITY CONDITIONS

Using (11), the update equation of cNLMS can be rewritten

as

w(n) =

[
I− µ̃

δ + ‖r(n)‖2 r(n)rT (n)

]
w(n− 1)

+ µ̃ x̂2(n)m(n)
r(n)

δ + ‖r(n)‖2 , (17)

3
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where I is the identity matrix with dimensions M×M . The

matrix between brackets has M−1 eigenvalues equal to one

and one eigenvalue equal to λ1 =1−µ̃ r
T (n)r(n)/[δ+‖r(n)‖2].

Noticing that

0 ≤ r
T (n)r(n)

δ + ‖r(n)‖2 < 1,

and for ‖r(n)‖2 ≫ δ, r
T (n)r(n)/(δ + ‖r(n)‖2) ≈ 1, in or-

der to ensure |λ1| < 1, we must choose µ̃ in the interval

0 < µ̃ < 2. (18)

The norm of the second term of the r.h.s. of (17) is bounded,

i.e.,

0 ≤ µ̃ |x̂2(n)| |m(n)| ‖r(n)‖
δ + ‖r(n)‖2 ≤ µ̃ X

√
δ

2δ
<∞.

Therefore, using (deterministic) exponential stability results

for the LMS algorithm [20], we conclude that cNLMS is sta-

ble in a robust sense if µ̃ is chosen in the interval (18).

6. SIMULATION RESULTS

In all simulations, we assume the Ikeda map with C1 = 0.4,

C2 = 0.9, C3 = 6, and R = 1 [5, p.202]. The state vec-

tors of (2) and (3) were initialized as x(0) = 0 and x̂(0) =
[ 0.1 − 0.1 ]T , respectively. Other initializations also al-

low equally good results in terms of synchronization when

the equalizer mitigates reasonably well the intersymbol inter-

ference. Furthermore, we assume the transmission of a bi-

nary sequence m(n) ∈ {−1, 1} and equalizers initialized as

w(0) = 0. For comparison, we also consider the system of

Fig. 1 without equalizer, in which ŝ(n) = r(n).
We first assume that the encoded sequence s(n) is trans-

mitted through the infinite impulse response (IIR) channel

H1(z) = 1/[1 + 0.6z−1] with SNR = 30 dB and ∆ = 0.

The sequence estimated via the cNLMS equalizer and the

error after the decision device (both for one realization) are

shown in Figs. 3-(b) and (c). The average of the two coef-

ficients and the MSE(n) , E{e2(n)} along the iterations,

estimated by an ensemble-average of 1000 runs, are shown

respectively in Figs. 3-(d) and (e). In Fig. 3-(e), we also show

the MSE curve for the case without equalizer. We can observe

that cNLMS approaches to wo ≈ [ 1 0.6 ]T , whose coeffi-

cients are shown as dashed lines in Fig. 3-(d). Therefore, the

equalizer is working as expected since this solution mitigates

the intersymbol interference, recovering properly the trans-

mitted sequence, which can be confirmed through the errors

after the decision device shown in Fig. 3-(c). The commu-

nication is completely lost in the case with no equalizer as

shown if Figs. 3-(a) and (e).

Now, we assume that the encoded sequence s(n) is trans-

mitted initially through the real part of the telephonic channel

of [21] and changed to its imaginary part at n = 1000, with

SNR = 30 dB and ∆ = 8. The results for this case are

shown in Fig. 4. cNLMS converges to the Wiener solution,

whose coefficients are shown as dashed lines in Fig. 4-(d). It
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Fig. 3. Estimated sequence with (a) No equalizer and (b) cNLMS

(µ=0.1, δ=10−2, ε=0.1); (c) Errors after decision; (d) Average of

the coefficients of cNLMS and Wiener (dashed lines); (e) Estimated

cMSE; average of 1000 runs, SNR = 30 dB; M = 2; ∆ = 0.

is important to notice that cNLMS is able to track the abrupt

variation in the channel, leading approximately 600 iterations

to achieve the steady-state again. The equalizer plays an im-

portant role to mitigate the intersymbol interference since the

performance of the system without equalizer is much worse.

Considering SNR = 30 dB, M = 5, ∆ = 3, and the

channel H3(z) = h0 + z−1 + h0z
−2, 0 ≤ h0 ≤ 0.5, we

obtain BER curves as a function of h0, as shown in Fig. 5.

It is important to remark that in the case with no equalizer,

the delay is due only to the channel. Therefore, we compared

the recovered sequence with the transmitted one, assuming

∆ = 1 in this case. The smaller the value of h0 the lower the

intersymbol interference introduced by the channel. We can

observe that cNLMS outperforms the case with no equalizer

for h0 > 0, providing a reasonable BER. The case with no

equalizer achieves a BER equal to that of cNLMS only for the

ideal channel (h0 = 0). Note that the relatively high BER ≈
10−2 in the left of Fig. 5 is only due to channel noise and

reflects the extreme sensitivity of chaotic synchronization to

noise. Obviously, the adaptive filters used here cannot tackle

this problem. In the optical communication field, it is possible

to obtain much higher values of SNR and consequently lower

values of BER, as [7] did. The issue of channel equalization

was successfully solved as shows the almost coincidence of

the cNLMS and Wiener solution curves.

7. CONCLUSION

In this paper, we proposed a supervised equalization scheme

based on the NLMS algorithm for recovering a binary se-

quence in chaos-based digital communication systems. Sim-

ulations show that the proposed algorithm can successfully

permit chaotic communications. As far as we are concerned,

4



 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

this is the first adaptive scheme proposed for the chaotic mod-

ulation in which the message is fed back into the CSG. Al-

though we considered the Ikeda map in the simulations, the

cNLMS algorithm can be also used with other chaotic maps

(e.g., Hénon map [5]).
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Fig. 4. Estimated sequence with (a) No equalizer and (b) cNLMS

(µ=0.5, δ=10−5, ε=0.1); (c) Errors after decision; (d) Average of

the coefficients of cNLMS and Wiener (dashed lines); (e) Estimated

cMSE; average of 1000 runs, SNR = 30 dB; M = 15; ∆ = 8.
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