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1. INTRODUCTION

A chaotic signal is deterministic, aperiodic, bounded in
amplitude and it has sensitive dependence on initial con-
ditions (Alligood et al., 1997). Due to these properties, a
large number of research areas are developing applications
using chaotic signals, including Telecommunications Engi-
neering (Lau and Tse, 2003; Eisencraft et al., 2012). With
the frequent emergence of new challenges and applications
in this area, studying new techniques and ideas that do not
fit in current commercial standards is relevant as a research
object. Examples of applications of chaotic signals in the
Telecommunications field that have recently come up are:
pseudorandom sequences generation (Rovatti et al., 2004),
digital communications (Eisencraft et al., 2012, 2013; Ren
et al., 2013), ultrawideband communications (Dmitriev
et al., 2006), optical communications (Argyris et al., 2005),
satellite networks (Grzybowski et al., 2010), device mod-
eling (Soriano et al., 2012b; Monteiro et al., 2009), among
many others (Kennedy et al., 2000; Grzybowski et al.,
2011).

By one hand, these signals show up suitable for use in
applications that require security due to their difficulty
of prediction and to the fact that they can be easily
confused with the channel noise (Lau and Tse, 2003).
Chaotic signals have been proposed as broadband carriers
transmitting information with the potential of providing a
high level of robustness and privacy in data transmission.
For example, Argyris et al. (2005) describe a practical
optical high speed communication system using synchro-
nization of chaotic signals in a commercial fiber optic
channel where dispersion effects were compensated in a
non-adaptive manner.
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By the other hand, chaos-based systems that rely on
chaotic synchronization present, in general, poor perfor-
mance in terms of Bit Error Rate (BER) when the chan-
nel conditions are not almost ideal (Williams, 2001). For
instance, the system as proposed by (Argyris et al., 2005)
would perform badly in a wireless channel where distor-
tions vary constantly in time due to multipath, chang-
ing noise sources, and other time-variant impairments.
In addition, there must be compatibility between chaos-
based and conventional communication systems (Lau and
Tse, 2003). Thus, there seems to be much research to be
conducted before chaotic signals have actual conditions of
practical utilization (Eisencraft et al., 2012).

In this article, we numerically analyze the chaos-based
communication system proposed by Wu and Chua (1993),
in its discrete-time version (Eisencraft et al., 2009). In
this system, the message is mixed with a state variable
of the transmitter system, through an invertible encoding
function. The result is then transmitted and also fed back
in the transmitter. This system can be considered as a
simplified model of one of the practical implementations
of Argyris et al. (2005). The communication channel is
modeled as additive white gaussian noise (AWGN).

Furthermore, we propose a different encoding function
that permits to control the mix between chaotic and
information signals, thus providing a compromise between
message security and BER performance.

This article is organized as follows: in Section 2, the
digital communication system studied is briefly described.
In Section 3, we present the employed maps. Next, in
Section 4, the obtained simulation results are shown and
finally, in Section 5, we draft some conclusions.
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2. THE DISCRETE-TIME WU AND CHUA
COMMUNICATION SYSTEM

The communication system under study is based on the
master-slave synchronization method of Wu and Chua
(1993) adapted for discrete-time by Eisencraft et al.
(2009).

Consider a master system that can be expressed as

x(n+ 1) = Ax(n) + b+ f(x(n)), (1)

and a slave one, which depends on x(n), and can be written
as

y(n+ 1) = Ay(n) + b+ f(x(n)), (2)

where n = 0, 1, 2, 3 . . ., {x(n), y(n)} ⊂ R
K , x(n) =

[x1(n), . . . , xk(n)]
T and y(n) = [y1(n), . . . , yk(n)]

T . Ma-
trix AK×K and vector bK×1 are constants. The function
f(·) : RK → R

K is non-linear in general.

Master and slave systems are completely synchronized
(Boccaletti et al., 2002) when the synchronization er-

ror, e(n) � y(n) − x(n) tends to zero with n, i.e.,
limn→∞ e(n) = 0. Using (1)-(2),

e(n+1) = y(n+1)−x(n+1) = A(y(n)−x(n)) = Ae(n).
(3)

So, for the synchronism, it is sufficient that the eigenvalues
λi of A satisfy (Agarwal, 1992)

|λi| < 1, 1 ≤ i ≤ K. (4)

A communication system based on (1)-(2) was proposed
by Eisencraft et al. (2009), assuming that f(x(n)) =
[f(x1(n)), 0, . . . , 0]

T . In this system, the message to be
transmitted m(n) is encoded by the signal x1(n) using an
invertible encoding function c(·, ·). Thus, the transmitted
signal is s(n) = c(x1(n),m(n)). This signal is fed back into
the master instead of x1(n).

The block diagram of this communication system is de-
picted in Figure 1, where z−1 denotes the delay operator
(Oppenheim and Schafer, 2009).

The equations governing this system as a whole take the
same form of (1) and (2), the only difference being the
arguments of f(·):

x(n+ 1) = Ax(n) + b+ f(s(n)), (5)

y(n+ 1) = Ay(n) + b+ f(r(n)), (6)

where r(n) represents the signal delivered to the receiver
input, that is r(n) = s(n) +w(n), where w(n) is the noise
added in the channel, modeled as AWGN.

The retrieved message m′(n) is decoded in the receiver as

m′(n) = d(y1(n), r(n)), (7)

with d(·, ·) the inverse of c(·, ·) with respect to the second
variable.

For an ideal channel, i.e., without the presence of noise,
s(n) = r(n) and we can write (5) and (6) as

x(n+ 1) = Ax(n) + b+ f(s(n)), (8)

y(n+ 1) = Ay(n) + b+ f(s(n)). (9)

In this case, the error dynamics is again given by (3), and
if condition (4) is satisfied, y(n) → x(n), and in particular,
y1(n) → x1(n). Thus, it follows that

m′(n) = d(y1(n), s(n)) → d(x1(n), s(n)) = m(n). (10)

Therefore, when the communication channel is ideal, mes-
sage m(n) can be perfectly recovered at the receiver. How-
ever, when noise is added to the channel, s(n) �= r(n) and
the recovered message can contain errors.

We consider the encoding and decoding pair c, d calculated
for each n as

{

s = c(x1,m) = (1− γ) · x1 + γ ·m
m′ = d(y1, r) = (r − (1− γ) · y1)/γ , (11)

where 0 < γ ≤ 1 is a constant. This function is a more
general version of the mix usually considered in previous
work that considered γ fixed and small, see (Eisencraft
et al., 2009; Cuomo and Oppenheim, 1993; Cuomo et al.,
1993). The parameter γ controls the relative strength of
message and chaos in the transmitted signal.

We consider digital messages m(n) = ±1 for each n. It can
be interpreted as the discrete-time low-pass equivalent of
a polar modulation (Lathi and Ding, 2009). The symbols
are equiprobable. This way, it was added a comparator at
the receiver in Figure 1, to obtain a binary estimate m̂(n)
of the transmitted message. For each n, if m′(n) > 0, the
decision is m̂(n) = +1 whereas if m′(n) < 0, the decision
is m̂(n) = −1.

For sake of comparison with conventional systems, it is
considered the direct transmission of the signal m(n)
through the channel, i.e. s(n) = m(n). This case is
called here without chaos. Defining the signal-to-noise ratio
(SNR) as the average energy per bit divided by the power
spectral density of the AWGN, it can be shown that, the
BER for this case (BERwc or BER without chaos) is given
by (Lathi and Ding, 2009)

BERwc = Q
(√

SNR
)

(12)

where

Q(y) =
1√
2π

∫

∞

y

e−x2/2dx. (13)

3. CONSIDERED MAPS

In this section we present the maps employed in the simu-
lations. We chose well-known maps of different dimensions
in order to test the influence of this choice in terms of BER
performance.

The chosen maps must meet the following prerequisites:

(1) they should generate chaotic signals. The maps cho-
sen satisfy this condition (see e.g. (Alligood et al.,
1997));

(2) it should be possible to rewrite them as (1);
(3) they must attain master-slave synchronization. For

this, the eigenvalues of the associated A must satisfy
(4).

3.1 Quadratic map

The one-dimensional quadratic map, which consists of the
logistic map with a change of coordinates (Alligood et al.,
1997), is given by

x1(n+ 1) = −2x2

1
(n) + 1, (14)

with x1(0) ∈ [−1, 1]. This map can be rewritten in the form
of (1) withK = 1,A = 0, b = 1 and f(x(n)) =

[

−2x2

1
(n)

]

.
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Fig. 1. Communication system under consideration: block diagram.

Thus, for this system, the eigenvalue of A is λ1 = 0
and therefore it satisfies (4). Hence, a master-slave system
formed using this map, reaches synchronization.

3.2 Skew tent map

The skew tent map is composed of two linear sections with
different slopes signals (Eisencraft et al., 2010). The x-
coordinate α of the tent peak is the parameter that defines
a map in the family. Thus, maps of the skew tent family
are defined by

x1(n+ 1) = fI(x1(n)) =











2

α+ 1
x1(n) +

1− α

α+ 1
, −1 < x < α,

2

α− 1
x1(n)−

α+ 1

α− 1
, α ≤ x < 1

(15)

with {α, x(0)} ⊂ U = (−1, 1). They can be rewritten as
(1) with K = 1, A = 0, b = 0 e f(x(n)) = [fI(x1(n))]. So,
again λ1 = 0 and the condition (4) is satisfied. Therefore,
a master-slave system formed using this map reaches
complete synchronization. For the numerical simulations
we considered α = 0.1.

It should be noticed that, in fact, any one-dimensional map
can be used in the proposed scheme with K = 1, A = 0
and λ1 = 0 . For these maps, the synchronization is trivial
since the only state variable is transmitted and therefore
directly recovered at the slave.

3.3 Hénon map

The Hénon map (Hénon 2D) is given by (Hénon, 1976)

x(n+ 1) =

�

x1(n+ 1)
x2(n+ 1)

�

=

�

1− αx2

1
(n) + x2(n)

βx1(n)

�

(16)

and can be rewritten in the form (1) with K = 2, A =
�

0 1
β 0

�

, b = [ 1, 0 ]
T
, e f(x(n)) =

�

−αx2

1
(n) 0

�T
. The

eigenvalues of A are λ1,2 = ±
√
β, so there is master-slave

synchronization for |β| < 1. For the numerical simulations,
we consider α = 1.4 and β = 0.3, as usual in the literature
(see e.g. (Alligood et al., 1997)).

3.4 Three-dimensional Hénon Map

A three-dimensional extension of the Hénon map (Hénon
3D) was employed in the study of synchronization of
coupled networks of maps (Eisencraft and Batista, 2011).
It is given by:

x(n+ 1) =

�

x1(n+ 1)
x2(n+ 1)
x3(n+ 1)

�

=





−αx2

1
(n) + x3(n) + 1
−βx1(n)

βx1(n) + x2(n)



 ,

(17)
with α = 1.07 and β = 0.3. It can be rewritten as

(1) with K = 3, A =

�

0 0 1
−β 0 0
β 1 0

�

, b = [ 1, 0, 0 ]
T

and

f(x(n)) =
�

−αx2

1
(n), 0, 0

�T
. The eigenvalues of A are

λ1,2 = 0.4084 ± 0.4477j, and λ3 = −0.8169. As |λi| <
1, i = 1, 2, 3, (4) is satisfied.

Figure 2, shows samples of transmitted signals s(n) for the
considered maps. In each case, m(n) is formed by the same
equiprobable sequence of ±1 shown in Figure 2(a).

4. NUMERICAL SIMULATIONS

Using the communication system with the maps and
encoding function described in the previous sections, we
performed the simulations presented next.

On one hand, to exemplify the influence of the parameter
γ in the “security” of the transmitted signal, we show in
Figure 3 a message encoded using the quadratic map, the
same initial conditions and the encoding function (11) with
different values of γ. It can be seen that for values of γ
closer to the unity the encoded signal is similar to m(n)
and for values of γ closer to zero there is a greater influence
of the chaotic component and the encoded signal moves
away from the message.

On the other hand, Figure 4 shows BER curves as a
function of the channel SNR when using different values
of γ and the quadratic map. For each value of SNR we
simulated the transmission of 108 bits. To eliminate the
transitory effect, the first 200 bits were discarded.
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Fig. 2. Samples of transmitted signals in the system of
Figure 1 using the encoding function (11) with γ =
0.4: (a) message m(n) and s(n) using (b) quadratic,
(c) skew tent, (d) Hénon 2D and (e) Hénon 3D maps.

Analyzing this figure, we can notice that γ influences the
results in terms of BER. When γ takes values close to
zero, the BER only reach reasonable values in almost
ideal channels. In contrast, for values of γ near the unity,
we obtain the best results in terms of BER, next to the
optimal case without chaos.

Thus, in Figures 3 and 4, it is observed that the value of γ
represents a compromise between how much the message is
hidden and the BER in AWGN. The optimal value of γ is
the closest possible to unity, for lower BER, but as long as
the message does not become apparent in the transmitted
signal s(n).

As an initial way to access how apparent is the message
m(n) in s(n), we used as measure the BER that is obtained
by applying a threshold decision directly to the transmitted
signal s(n), without decoding, in a noiseless channel. If
s(n) ≈ m(n), a BER next to zero is expected and we
conclude that the message is completely apparent in s(n),
i.e. there is no “security” whatsoever. If the message is
hidden, a BER next to 0.5 is expected.

Figure 5 shows the BER values obtained in this way, as a
function of γ for the different maps tested here. To carry
out this simulation it was considered the transmission
of 106 bits for each γ, random initial conditions and
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Fig. 4. BER as a function of SNR for the communication
system studied using the quadratic map (14) and the
values of γ from Fig. 3.

the first 200 bits were discarded. Notice that for the
Hénon 3D map for 0 < γ ≤ 0.01 and 0.05 < γ <
0.35, the signals generated diverge which prevents the
choice of these intervals of γ for this particular map.
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From this figure, γ ≈ 0.4, is an interesting value to be
considered as the BER obtained only with a threshold on
the transmitted signal exceeding 30% for all maps used.
Thus, m(n) is sufficiently “hidden” and we still have a
reasonable performance in AWGN channel, as shown in
Figure 4. It is interesting to notice that previous works
that consider similar chaos modulation schemes (see e.g.
(Eisencraft et al., 2009; Cuomo and Oppenheim, 1993;
Cuomo et al., 1993)) use to consider much lower values
of γ. This is due to the fact that, in general, they concern
only with the “security” of the system and do not take
into account its BER performance in AWGN.
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Fig. 5. BER obtained with threshold applied directly to
s(n) as function of γ. The signals generated by the
Hénon 3D map diverge for some values of γ. At these
points the curve is not shown.

Figure 6 shows BER curves for the employed maps with
γ = 0.4. It was considered the transmission of 108 bits for
each SNR, random initial conditions and the first 200 bits
were discarded. We notice that, for γ = 0.4, the skew-
tent map shows BER values below that of other maps
for higher values of SNR. Using the encoding function
with an appropriate value of γ, the curves are much
closer to the optimal result without chaos than in others
communication systems based on chaos synchronization
previously described in the literature (Williams, 2001).

5. CONCLUSIONS

In this paper, we analyze the performance in terms of
BER of a digital chaos-based communication system in
AWGN channel. Four different maps and an innovative
encoding function were tested. The proposed function has
a parameter that allows to control the trade-off between
how apparent is the message in the transmitted signal and
the BER performance. It was numerically shown that it is
possible to choose a parameter of the encoding function so
that the message is not apparent and the BER values in
AWGN channel are suitable for practical communications.
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Fig. 6. BER as a function of SNR for γ = 0.4.

The results presented in this work are still below of what
is obtained with conventional systems, at least in terms of
BER in AWGN channel. As alternatives to improve this
performance and as suggestion for future works it can be
considered to explore concepts of bio-inspired algorithms
(Soriano et al., 2012a), reservoir dynamics (Schrauwen
et al., 2007) and networks of maps (Eisencraft and Batista,
2011) to improve the robustness to noise of chaotic syn-
chronization. Another relevant topic as future work is to
better define the concept of “hidden” messages, compar-
ing the gains in terms of security in using a chaos-based
technique with conventional cryptography and security at
the physical layer.
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