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A Class of Channels Resulting in Ill-Convergence for
CMA in Decision Feedback Equalizers
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Abstract—This paper analyzes the convergence of the constant
modulus algorithm (CMA) in a decision feedback equalizer using
only a feedback filter. Several works had already observed that the
CMA presented a better performance than decision directed al-
gorithm in the adaptation of the decision feedback equalizer, but
theoretical analysis always showed to be difficult specially due to
the analytical difficulties presented by the constant modulus crite-
rion. In this paper, we surmount such obstacle by using a recent
result concerning the CM analysis, first obtained in a linear finite
impulse response context with the objective of comparing its solu-
tions to the ones obtained through the Wiener criterion. The theo-
retical analysis presented here confirms the robustness of the CMA
when applied to the adaptation of the decision feedback equalizer
and also defines a class of channels for which the algorithm will
suffer from ill-convergence when initialized at the origin.

Index Terms—Blind equalization, constant modulus algorithm,
decision directed algorithm, decision feedback equalization,
ill-convergence.

I. INTRODUCTION

T IME dispersive channels generate intersymbol interfer-
ence that hinders the performance of digital communica-

tion systems. To overcome such issue, we may use an equalizer.
Linear equalization provides a low computational complexity
solution, but suffers from noise-enhancement, presenting a
performance that is not satisfactory for channels with spectral
nulls [1]. On the other hand, maximum-likelihood sequence
estimation [2]–[4] gives the optimal bit-error rate at the cost of
a huge complexity, specially for long channels and higher order
modulations. A good compromise between both solutions is
provided by a nonlinear approach namely decision feedback
equalization [5], [6]. Such solution is basically an infinite
impulse response filter with a nonlinear decision device in the
feedback loop. The addition of this device practically eliminates
the noise-enhancement, even in channels with spectral nulls.

The most used and studied blind algorithm in the decision
feedback equalizer (DFE) context is the decision directed
algorithm (DD-DFE). This algorithm is known to converge
well, attaining the optimum solution, when the feedback filter
is initialized at the origin and the channel is not severe, i.e.,
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in an opened-eye situation. In severe channels, however, the
algorithm may converge to local minima that do not reduce
intersymbol interference. In this case, a good initialization is
crucial to attain a good solution. Usually, decision directed
algorithms are used after a first period of trained adaptation,
which sufficiently reduces intersymbol interference leading to
an opened-eye situation.

In a linear equalization structure, where the equalizer is given
by a finite impulse response (FIR) filter, another blind criterion
is known to perform better than decision directed: the constant
modulus (CM) criterion [7], [8]. This criterion presents fewer
local minima and is able to considerably reduce intersymbol
interference even in a closed-eye situation. Since it presents a
better performance when used in linear structures, the extension
of its use to nonlinear structures such as the decision feedback
equalizer was already expected. Several works [9]–[11] tested
the CM algorithm (CMA-DFE) in this context and its better
performance was observed through simulations. Strategies com-
bining both algorithms, starting the adaptation with an infinite
impulse response filter adapted by CMA and after switching to
a DD-DFE were also tested [10], [12]. Due to its analytical dif-
ficulties, however, no theoretical convergence analysis on the
CMA-DFE was done hitherto.

Unlike CMA-DFE, DD-DFE has been extensively studied in
the literature [13], [14]. In [14], the authors studied the DD-DFE
convergence properties classifying the local minima into two
types: the ones that resulted from the decision feedback equal-
izer structure, and the ones resulting from the adaptive algorithm
itself. The first type of minima does not depend on the algo-
rithm being used and was carefully studied by the authors in
[14]. The second type of minima was carefully analyzed in [13].
In this work, the authors were able to define a class of channels
for which DD-DFE converges to a bad local minimum when
the feedback filter is initialized at the origin. Such initialization
is interesting when no a priori information on the channel is
known.

In this paper, our objective is to extend the results obtained
in [13] to the CMA-DFE. The first step in this direction is to
consider the same framework as [13], where the decision feed-
back equalizer is given only by the feedback filter. This condi-
tion also restrain the channels being studied. We will consider
that they do not present precursor coefficients and that no noise
is added. Even though such assumptions are very limiting for
practical purposes, they have been considered by several authors
in order to render the decision feedback equalizer analysis, that
is not trivial, more feasible [11], [14]. It should be noted that
the performance of a decision feedback equalizer is largely al-
tered when considering both filters, feedforward and feedback.
Since, in this case, a theoretical analysis would be impractical,
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Fig. 1. Decision feedback equalizer.

comments on the behavior of a decision feedback equalizer with
both filters, adapted by the CMA, may be found at the end of this
paper.

The analytical difficulties that had hindered the theoretical
development towards the understanding of the CMA-DFE con-
vergence performance may be bypassed by a recent result ob-
tained in [15] and [16]. Several other works in the literature
also compare Wiener filters with constant modulus solutions
[17]–[20], arriving at mean square error performance bounds
for the constant modulus solutions and showing that such so-
lutions are collinear with Wiener receivers. However, in [15]
and [16], the authors compare the CM minima with the ones
obtained using the classical supervised Wiener criterion using
a very clever approximation that enables the analytical obten-
tion of the CM minima. Such analysis consider a linear FIR
equalizer, but it can be directly extended to the decision feed-
back equalizer scenario.

This paper is organized as follows. Section II presents the
system model to be considered throughout the work. Section III
defines the DD-DFE, while Section IV presents the CMA-DFE,
analyzing the constant modulus criterion in order to deter-
mine the minima locations in the decision feedback equalizer
scenario. Section V reviews the results presented in [13] for
three-tap channels, analyzing the DD-DFE error surface and
extending the results to CMA-DFE. Section VI generalizes the
obtained result for a -order channel. Finally, Section VII
concludes this paper.

II. SYSTEM MODEL

The most general form of a DFE may be represented as shown
in Fig. 1. Symbols are transmitted through a channel .
The received data with noise is first filtered by a FIR feed-
forward filter. The output of such a filter is subtracted from the
output of the feedback filter which is a linear combina-
tion of previously taken decisions. Such operation leads to .
Assuming correct decisions, the feedback filter output may be
viewed as the amount of postcursor intersymbol interference
present in the output of the feedforward filter.

Since our objective is to extend the results obtained by [13],
we will first place ourselves in the same problem context. In this
sense, the first important assumption to be made can be stated
as follows.

Assumption 1: The channel has a finite impulse response and
there is no precursor, i.e., the leading tap dominates. Therefore,
we can define the vector , composed by the

elements of the channel impulse response, where
and for . We also assume that no noise
is added.

It is clear that Assumption 1 is very limiting for practical
channels, where usually precursors and noise are present. As

a consequence of this assumption, the feedforward filter is not
useful and can be discarded, what enables us to restrict our anal-
ysis to the feedback filter and to the local minima associated
with error propagation. Several works [13], [14] consider this
same restriction, allowing the analytical tractability of the deci-
sion feedback equalizer.

The restriction for derives from the
fact that we are concerned with minima resulting from the adap-
tive algorithm itself. When the channel presents a precursor,
decision feedback equalizer may lead to what can be called as
delay-type minima, which were studied in detail by [14]. Thus,
such a restriction avoids delay-type minima. In addition, when
using a feedforward filter, which mitigates the effect of the pre-
cursor, the channel-feedforward filter response seen by the feed-
back filter will often fall in the class of channels defined by As-
sumption 1 [9].

Furthermore, we will consider channels with real valued coef-
ficients, even though the extension to the complex case is direct.

Under Assumption 1, the decision feedback equalizer struc-
ture may be described mathematically as follows:

(1)

where is the received signal, is the feedback filter
output signal, is the vector
of transmitted symbols, is the feed-
back filter tap vector and
is the feedback filter input, given by the past decided symbols.
Before defining the decision device function, we need to state
our second assumption, also with the objective of rendering the
convergence analysis more feasible.

Assumption 2: The transmitted symbols are binary phase
shift keying (BPSK), belonging to the alphabet , and
are independent and identically distributed.

Therefore, the decision device nonlinear function is given by

(2)

In addition, in order to guarantee that perfect equalization is
possible, see Assumption 3 below.

Assumption 3: The feedback filter length matches the channel
postcursor, that is, the feedback filter length is equal to .

Having defined the system model in which this work is in-
serted, let us discuss the two most used blind algorithms for the
feedback filter adaptation.

III. DECISION-DIRECTED DECISION FEEDBACK EQUALIZER

The decision-directed criterion is based on the minimization
of the mean square error between the decided symbols and the
equalizer output. In the decision feedback equalizer context, its
cost function may be written as

(3)

The minimization of (3) leads to the well known least mean
squares-type decision feedback equalizer algorithm named de-
cision directed algorithm (DD-DFE):

(4)
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where is the step size.
Analyzing (3) more carefully, and using (1), we may rewrite

as

(5)

Differentiating (5) with respect to and setting it equal to
zero, we arrive at [13]

(6)

which defines the optimum value, , of the feedback
filter coefficients. The statistics present in (6) depend on
the region of the error surface, denoted by , in which the
filter taps are placed. This topic will be discussed in detail in
Section V. Defining
and , (6) may be rewritten as

(7)

IV. CONSTANT MODULUS ALGORITHM BASED

DECISION FEEDBACK EQUALIZER

The constant modulus criterion penalizes deviations of the
equalizer output from a constant modulus:

(8)

where . Following Assump-
tion 2, will be equal to one. The resulting gradient descent
algorithm, known as CMA, is given by

(9)

It is important, for the rest of our analysis, to be able to an-
alytically obtain the position of the optimum solution re-
sulting from the minimization of (8). In fact, works like [13] and
[14] did not include CMA in their analysis because of the diffi-
culty in achieving such result.

Differentiating (8) with respect to and setting it equal to
zero will result in a cubic term depending on . Through such
procedure, it is not possible to isolate the variable , writing it
as a function of the channel. However, a recent result obtained
in [15], [16] may simplify such analysis. In these works, the
authors show that, under Assumption 2, it is possible to write

as

(10)

where is the transmitted symbol and is a delay. Such
manipulation is possible since . Thus,
the blind CM criterion may be written as a supervised cost
function, depending on the transmitted symbols .
Using the Cauchy–Schwarz inequality, the authors go even
further showing that

(11)

and thus establishing a superior bound to the CM cost function
that depends on fourth-order Wiener like terms. The inequality
shown in (11) may be approximated as an equality in regions
near a good CM minima, which will lead to good equalization
results. Therefore, considering that the equalizer taps are near
a minimum solution, where may be considered to assume
small values, the following approximation is valid

(12)

which, in other words, consists in saying that the variance of
the square error is approximately zero. This is only rigorously
true when there is a perfect channel inversion. Note that this is
possible when dealing with a decision feedback equalizer struc-
ture, even though the result was originally obtained in a linear
FIR equalization context [15], [16]. The authors claim that the
approximation is valid in conditions near the zero-forcing solu-
tion, even though such solution is not attainable in their context.
Nevertheless, even when may be considered high, such as
around local minima solutions, the authors observe that the re-
sult is close to the expected value obtained through simulations.
The decision feedback equalizer context is better for validating
the considered approximation, since perfect channel inversion
is possible. In Section V, we will see that the approximation
also remains valid near local minima convergence, enabling the
achievement of very accurate channel configurations in which
the algorithm will or will not converge to a bad local minimum.

Using (12) in (11) and considering that the second term in the
later may be equivalently approximated results in

(13)

The next step towards the analytical obtention of the optimum
solution is to differentiate (13) with respect to , extending the
result obtained in [15] and [16] to the decision feedback equal-
izer context. First, expanding the first term on the right-hand
side of (13), we obtain

(14)

where and were defined in (7),
and was considered equal to zero since

this choice leads to a perfect equalization. Differentiating (14)
with respect to results in

(15)

We may now turn to (13) and differentiate finding

(16)

where we dropped the dependence with to simplify the nota-
tion.
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The optimal solution will be given by making (16) equal
to zero. This will lead to a system of equations where the number
of variables is equal to the number of equations, but each one of
these equations will be nonlinear. In order to render the problem
more treatable, let us consider the case of three-tap channels,
which, under Assumption 3, leads to a feedback filter with two
taps. In this case, the two equations from (16) will have the
general form

(17)

where the constant vectors depend on , and
. This system of equations does not have a closed form

solution but, once with are known, it can be
solved numerically.

V. ERROR SURFACE ANALYSIS: THREE TAP CHANNELS

In [14], the authors study the gross convergence properties of
a decision directed algorithm in a decision feedback equalizer
structure, classifying the possible local minima into two types:
the ones resulting from the decision feedback equalizer struc-
ture, named delay-type minima, and the ones resulting from the
adaptive algorithm itself. Since the first type is carefully studied
in [14], we will concentrate on the second type of minima. For
DD-DFE, such analysis was well detailed in [13]. Here, we will
extend it to the constant modulus algorithm in a decision feed-
back equalizer structure.

It is well known that the decision device nonlinearity, present
in the decision feedback equalizer structure, divides the equal-
izer parameter space into polytopes, denoted by [13]. Con-
sidering Assumptions 1–3, the optimum decision device in the
sense of the maximum-likelihood criterion is given by (2). The
polytopes are limited by hyperplanes that can be defined as

(18)

where and vary through all possible combinations of the
alphabet symbols according to Assumption 2.

In addition, let us define a state of past symbols and estimates

(19)

In each polytope, defines a finite state Markov process, with
transitions given by the input symbols [13]. It is inter-
esting to note that inside a polytope , the Markov chain will
be the same for any decision feedback equalizer setting. Con-
sidering the step size of the decision feedback equalizer algo-
rithm to be sufficiently small so that the Markov chain will at-
tain its steady state distribution before the algorithm moves sig-
nificantly around the polytope, we may consider the statistics
involved in the adaptation process to be constant within a poly-
tope. Thus, such statistics may be said to be piecewise constant.

The steady state statistics of the Markov chain will determine
the shape of the cost function inside each polytope, ruling the
behavior of the adaptive decision feedback equalizer. Firstly,
since blind algorithms are known to perform well in opened-eye
situations, let us restrain our attention to closed-eye channels

satisfying Assumption 1. Mathematically, if we consider three
tap channels, such a condition may be stated as

(20)

If the adaptive algorithm is initialized at a polytope that
presents a local minima, and considering that the algorithms
being studied are of the steepest descent type, convergence to
that bad solution will be certain. Thus, initialization is crucial
to attain a good solution. However, if no a priori information on
the channel is known, a sensible choice would be to initialize
the feedback filter taps with zero. Therefore, a local minima
convergence will occur if the center polytope, i.e., the polytope
which includes the vector , presents a local minima.
The center polytope, also considering the case of a three tap
channel, may be defined as

(21)

In [9] and [13], the authors show that, if a minimum is present
in the center polytope, it will certainly be a bad local solution.
That can be verified by noting that the optimum solution would
be given by and such a condition will not satisfy
(21).

In this work we are interested in determining a class of chan-
nels for which CMA-DFE, under Assumptions 1–3, when ini-
tialized at the origin, will present an ill-convergence. Such a
result will be compared to that obtained in [9] and [13] for
DD-DFE. To achieve such a result, we first need to obtain

, and , in order to determine the system of equations
defined in (17). These statistics depend on the channel being
considered. The closed-eye channel class , defined in (20) may
be subdivided into four regions:

(22)

(23)

(24)

(25)

In each of these subregions, [9] and [13] show that the finite
state Markov process formed by defined in (19), presents
transition probabilities that are invariant to . This means
that the statistics involved in the decision feedback equalizer
adaptation at , i.e., , and , may
be found through the finite state Markov process that depends
only on the subregion that the current channel belongs to and
not on the channel itself.

Finally, for any , with , convergence to
local minima after a zero initialization will occur if

, where is the solution of (16) using
the statistics of . In other words, after (21), convergence to a
local minima will occur if

(26)

It is important to note that the analysis developed in [13] and
reviewed in this section depends only on the definition of the
nonlinearity of the decision device. Thus, the results obtained
are valid for any adaptation algorithm. In the investigation of
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which channels satisfy (26) leading to an ill-convergence, the
differences in the existence of local minima in will depend
on how is obtained, which, in its turn, depends on the
criterion and algorithm being considered.

A. Statistics Definition in

Having defined subregions with in
(22) to (25), in order to obtain for both DD-DFE
and CMA-DFE, we need to build the finite state Markov
process for each subregion . Its steady state statistics will
enable us to obtain the matrices , and

. The Markov chain states are defined by (19), where
and will vary through all possible combinations of and

. Considering a three tap channel, this will give us a Markov
chain with 16 states. Transitions from one state to the other
will depend on and on the nonlinearity defined in (2). It
is interesting to note, however, that the statistics are constant
for any in . This includes the case in which .
Thus, the transitions may be found by analyzing

(27)

Through the steady-state Markov chain we are able to obtain the
following matrices:

•

(28)

•

(29)

•

(30)

•

(31)

For every subregion will be equal to zero what was
already expected under Assumption 2.

B. Defining the Class of Bad Channels for CMA-DFE

Using the matrices defined in Section V-A, we must now ob-
tain the optimum CM solutions through the system of equations
given by (17) and test if they verify condition (26). Since there
is no closed form solution for through (17), we will solve
the system of equations numerically. The dashed area in Fig. 2

Fig. 2. Class of bad channels for CMA-DFE.

Fig. 3. Class of bad channels for DD-DFE.

shows the regions in which there exists a solution satis-
fying (26), that is, in which convergence to a local minimum
will occur. Note that solving (17) gives us several solutions for

. Thus, the ill-convergence will occur if at least one of the
given solutions satisfies (26). The figure is given in terms of
and , under Assumptions 1–3 and with . Channels be-
longing to the dashed area are named bad channels since they
lead to the ill-convergence of CMA-DFE.

In the sequence, we also recover the results obtained for the
DD-DFE in [9] and [13]. In this case, is obtained through
(7) with the same matrices given in Section V–A. Fig. 3 illus-
trates the cases where .

Comparing with the CMA-DFE, given by Fig. 2, we may con-
firm the superior robustness of the CMA with respect to the
DD algorithm. Such a difference in performance was briefly
observed in [9], without major analysis. We have now numer-
ically verified that the class of channels leading to the ill-con-
vergence of the CMA-DFE is considerably smaller than that
of the DD-DFE. Mainly, for channels belonging to and ,
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Fig. 4. CMA-DFE error surface and convergence for � � �� � ���� ���� �
� � � � � � �� .

CMA-DFE will not present a local minimum in . Thus, the
algorithm will certainly move towards another polytope, which
may contain a global solution. As for channels belonging to

and , we may observe that the class of bad channels for
CMA-DFE is still smaller than that presented by DD-DFE.

It is also interesting to note that regions and , in which
CMA-DFE does not present a local minima in , are given by
minimum phase channels. On the other hand, regions and ,
in which CMA-DFE presents local minima in , are given by
non-minimum phase channels, i.e., such channels present one
root at the exterior of the unit circle.

It should be emphasized that the results obtained above con-
sider a decision feedback equalizer implemented using only a
feedback filter. Independently of the channel, when considering
a feedforward filter well projected in terms of length and ini-
tialization, the resultant channel viewed by the feedback filter
will probably be a minimum phase channel. In such a situa-
tion, as shown above, the CMA-DFE will converge to the op-
timum solution or to a delay-type minima, which is sufficient to
open the eye. However, the choice of such parameters may en-
gender some difficulties since usually the channel is not known.
It should also be noted that a theoretical analysis of such be-
havior is still very difficult.

C. Simulation Example

Let us consider the channels and
, where belongs to and belongs to

. Figs. 4 and 5 show the CMA-DFE error surface and con-
vergence respectively for and . The step size used was
equal to . As expected, the error surface in Fig. 4 does
not present a local minimum in and the algorithm converges
to the optimum solution perfectly inverting the channel. On the
other hand, channel is a bad channel near the border of the
dashed area shown in Fig. 2. For this reason, Fig. 5 shows a
shallow local minimum in . Channels closer to the corner
present deeper local minima as can be seen by Fig. 6, where
the channel was considered to be . Anyway,

Fig. 5. CMA-DFE error surface and convergence for� � ������������ �
� � � � � � �� .

Fig. 6. CMA-DFE error surface and convergence for� � ���������� � � �

� � � � �� .

this shallow minimum is sufficient to hold the convergence of
the algorithm when small step sizes are used [21].

Fig. 7 shows the result obtained for DD-DFE in channel .
As expected, the error surface presents a local minimum in
confirming the better performance of the CMA-DFE in this case.

Considering channels in that are not bad channels but are
also close to the border of the shaded region in Fig. 2, we may
observe a transition interval for which the error surface will not
present a local minimum in but it has a rather flat form near
the edges that define the center polytope. An example of such a
channel is . In this case, if we consider
the step size smaller than , the algorithm is not able to
cross to another polytope and converge to the global minimum.
It stays trapped in the border of . This situation can be seen in
Fig. 8. Note, however, that a very small step size must be used
to achieve such a behavior. For , the algorithm
escapes from and converges to the global minimum. As we
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Fig. 7. DD-DFE error surface and convergence for� � �� ����� ���� � � �

� � � � �� .

Fig. 8. CMA-DFE error surface and convergence for � � ��� ����� �����
� � � � �� .

continue moving away from the shaded areas in Fig. 2, the min-
imum in vanishes completely and the algorithm will always
move to another polytope that may present a local or global so-
lution. The analysis above may easily be extended to channels
belonging to , leading to the same results stated above.

It is also important to note that such results demonstrate that
the approximation given by (12) and used to obtain the system
of equations shown in (16), provides excellent accuracy in the
sense of defining the classes of bad channels.

VI. GENERALIZATION

Generalizing the number of channel coefficients, , it is
possible to achieve similar results as the ones developed for
three tap channels. Once again, we will restrain our attention
to closed-eye channels, since decision directed and constant
modulus algorithms converge well in opened-eye situations
assuming a center initialization. It was seen, for , that

the Markov chain ruling the statistics in the center polytope
for a closed-eye channel depended only on the class the

channel belonged to. Once the class is defined, the statistics are
constant over . This is no longer true for higher values of .
For this reason, in [13], the authors consider a more restrictive
class, the corner-class of channels given by

(32)

which satisfies the property that for any is not
in and that the Markov chain statistics will only depend
on which corner the channel parameters belong to. Thus, once
again, the statistics associated with will be constant.

It can be easily shown that if a channel is in , the de-
sired global solution can not be in [13]. Therefore, if the
central polytope presents a solution, it will certainly be a local
minimum. Each corner in the channel parameter space may be
denoted as where

(33)

with . Thus, knowing which corner-class the
channel belongs to, the statistics of the center polytope may be
obtained and the optimum feedback filter taps may be cal-
culated using (7) for DD-DFE and through the solution of (17)
for the CMA-DFE. Ill-convergence will occur if the following
condition is satisfied [13]:

(34)

where , belonging to . More details on this
analysis may be found in [13].

It is important to note that, even though the result given by
(34) closely follows what was done for the three-tap channel
case, when considering CMA-DFE, the obtention of may
quickly become complex as grows. The system given by (17)
contains nonlinear third-order equations on the feedback filter
coefficients, including crossed terms, that may not be solved
through a closed form expression.

VII. CONCLUSION

In this work, we have extended the class of channels for
which a decision feedback equalizer, implemented using only
a feedback filter, will converge to a local minimum when
initialized at the origin of the feedback filter parameter space.
Such a result had already been developed for the DD-DFE.
Extending the idea to the CMA-DFE, we have shown that,
for three-tap closed-eye channels, the class that will lead to
ill-convergence is much smaller than that presented by the
DD-DFE, confirming the greater robustness of the former. In
particular, the CMA-DFE does not present local minima for
minimum phase channels. In previous papers, such a result
had been observed only through simulations without being
properly explained, specially due to the analytical difficulty in
obtaining the optimum filter tap solution as a function of a given
channel for the CM criterion. To achieve such solution, we use
a recently developed approximation first proposed in a linear
FIR context, extending it to the decision feedback equalizer
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scenario. Generalization to a channel of order is briefly
discussed, since, in this case, finding the optimum solution for
the filter taps in a CMA-DFE may become quite complex.

The absence of a local minimum that results in the ill-con-
vergence of a null initialized feedback filter for minimum phase
channels constrained to Assumptions 1–3 implies an interesting
characteristic: it possibly guarantees the good operation of a
CMA-DFE when using a sufficiently large feedforward filter
with an adequate initialization. We may argue in this sense since
the constant modulus algorithm will lead to a solution similar
to the mean square error criterion, and the feedforward filter
may behave similarly to the whitened matched filter. A whitened
matched filter will turn the non minimum phase channel, viewed
by the feedback filter, into a minimum phase channel. There-
fore, assuming a spike initialization of the feedforward filter, the
feedback filter starts its adaptation observing a non-minimum
phase channel, possibly resulting in an initial ill-convergence
but, with the adaptation of the feedforward filter, the resultant
channel observed by the feedback filter should become closer
to a minimum phase channel avoiding the ill-convergence of
the decision feedback equalizer. Even if there is a residual pre-
cursor response, this should not be a problem, since it should be
small and can be approximated as Gaussian noise. Noise also
helps the convergence of the equalizer. Nonetheless, even if a
sufficiently large feedforward filter is used with a reasonable
initialization, a caveat must be made regarding the convergence
of such CMA-DFE: We have no guarantee that the feedforward
filter will indeed approximate a whitened matched filter. An ex-
ample of such a case is the equalizer convergence to a degen-
erated solution, which fortunately can be avoided by the use of
constraints [11], [22]. In addition, even if the feedforward filter
approximates a whitened matched filter, the equalizer may con-
verge to a delay-type minima [14].
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