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ABSTRACT

In this paper, we propose a simple computational chip-level

non-coherent timing synchronization technique operating in

the frequency domain. The proposed technique almost attains

the modified Cramér-Rao bound when the system operates

with small roll-off values of the transmitter/receiver filters.

Furthermore, the frequency domain processing allows to eas-

ily mitigate the noxious effect of strong narrowband interfer-

ence. The proposed method is discussed and analyzed. We

provide some analytical and numerical results to show its ef-

fectiveness.

1. INTRODUCTION

Timing synchronization is crucial for good performance of

code division multiple access (CDMA) systems. In this kind

of system, timing synchronization is usually divided in two

parts. The first one is a coarse technique, which should pro-

vide timing synchronization within a period of a chip. In the

following, the fine timing stage is responsible to acquire and

track the timing with an error much inferior to the chip period.

In this paper, we focus our attention in the latter case, i.e., the

fine timing stage.

The rationale used in this paper is that a time shift incurs

in a phase rotation in the frequency domain. By exploring

this property, we have proposed a simple computational non-

coherent timing synchronization technique. Its performance

is close to the modified Cramér-Rao bound (MCRB) [1] for

small roll-off values of the transmitter/receiver filters.

Moreover, the presence of narrowband interference is most

likely to occur in broadband systems and in some environ-

ments (e.g. power line channels [2]). Such interference can

be very strong and its mitigation can offer considerable gain

in the performance of the timing estimation. Differently from

time domain techniques that were tailored for additive white

Gaussian channels (e.g. the early-late gate, Müller & Muller,
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etc [1, 3]), the proposed technique can easily excise such nar-

rowband interferers.

This paper is organized as follows. In section 2 we de-

scribe the system model. The timing synchronization tech-

nique is introduced in section 3. Section 4 presents the ana-

lytical performance. In section 5, we assess the performance

of the technique with some numerical simulations and com-

pare them to the theoretical results obtained in the previous

section and to the MCRB. The computational complexity of

the technique is discussed in section 6. Finally, in section 7,

the conclusion and perspectives are stated.

2. SYSTEM MODEL

We will consider a multicarrier CDMA (MC-CDMA) system,

even though the technique can also be employed to direct se-

quence CDMA (DS-CDMA) if we use a frequency domain

receiver [4].

We take into account only the single user case and a dis-

tortionless channel. The analysis under multiuser interference

(MUI) is beyond the scope of this paper. However, it is worth

noting that MUI can be mitigated by parallel or successive in-

terference cancellation [5] in conjunction with the technique

presented herein.

Let us define the m-th spread symbol in frequency domain

as:

X(k, m) = a(m)C(k) (1)

where a(m) is the m-th transmitted symbol, C(k) is the k-th

chip of the spreading sequence and 0 ≤ k ≤ K − 1 with K
being the spreading factor and an even value.

The spread symbol in the time domain is obtained by per-

forming the inverse discrete Fourier transform (IDFT) given

by:

x(i + mK) = 1
K

K−1
∑

k=0

X(k, m)ej2πki/K

x(i + mK) = a(m)c(i), 0 ≤ i ≤ K − 1
(2)

where c(i) is the IDFT of C(k), and thus the relationship with

the DS-CDMA.



We then insert the cyclic prefix (CP), which is a copy of

the last NCP chips of each spread symbol and defining NT =
NCP + K , the signal in time domain becomes:

xCP (i + mK) = x

(

K

⌊

i + mK

NT

⌋

+ [[i + mK]NT − NCP ]N

)

(3)

where [x]y means the modulus function mod (x, y).
Finally, the transmitted signal s(t) is the result of the con-

volution of (3) with a root-raised cosine g(t) that has a roll-off

α and a delay τ representing the propagation delay:

s(t− τ) =

∞
∑

i+mK=−∞

xCP (i + mK)g(t− (i + mK)T − τ)

(4)

where T = K
NT

Tc and Tc is the chip period.

The received signal is given by:

r(t) = s(t − τ) + n(t) (5)

where n(t) is the Gaussian noise with variance σ2
n.

The received signal is convolved with a root-raised cosine

g(t + τ̂) with a roll-off α and the estimated delay τ̂ that is

used to track the delay τ . Let us define h(t, ∆τ) =g(t− τ) ∗
g(t + τ̂ ) = g(t) ∗ g(t − ∆τ) with ∆τ = τ − τ̂ as being

the timing offset. The signal is then sampled at the rate T
and the cyclic prefix is removed. Taking the discrete Fourier

transform (DFT) of the resulting signal, we have:

R(k, m, ∆τ) = a(m)C(k)H(k, ∆τ) + N(k, m) (6)

where H(k, ∆τ) =
(

F (k)e−j2πk ∆τ
KT +F (K−k)ej2π(K−k) ∆τ

KT

)

,

F (k) is the partial frequency raised-cosine response given by:

F (k)=



















1, 0≤k≤⌊K(1−α)
2 ⌋

1
2{1+cos[ π

Kα (k−K(1−α)
2 )]}, ⌈K(1−α)

2 ⌉≤k≤⌊K(1+α)
2 ⌋

0, ⌈K(1+α)
2 ⌉≤k≤K−1

and N(k, m) is the Gaussian noise in the frequency domain.

By defining U(k, m, ∆τ) = R(k, m, ∆τ)C∗(k) =
a(m)|C(k)|2H(k, ∆τ) + N(k, m)C∗(k), the despreading is

achieved by:

â(m) =

K−1
∑

k=0

U(k, m, ∆τ) (7)

3. THE FREQUENCY DOMAIN TIMING

TECHNIQUE

We suppose that the coarse timing stage has acquired syn-

chronism within an error smaller than the chip period. After-

ward, the fine stage refines the timing estimation and tracks

any variation. Many methods for timing synchronization can

be used, such as the classic early-late gate, which underly-

ing idea can be performed in the frequency domain [6]. In
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Fig. 1. Frequency response for two different timing offset

values and roll-off α = 0.22

this paper, we propose a simple computational frequency do-

main technique which can almost attain the MCRB for small

roll-off values and has no self-noise. It can also make a di-

rect use of the receiver equalizer, e.g. the matched filter, to

excise narrowband interference that may be present in the

received signal. In order to demonstrate our technique, let

us suppose a simple case where a(m) = 1 for every value

of m and absence of noise. In such a case, we can write

U(k, m, ∆τ) = |C(k)|2H(k, ∆τ). Since |C(k)|2 is real and

positive, let us analyze H(k, ∆τ) for two timing offset, repre-

sented in Figure 1. It is easily seen that the phase of H(k, ∆τ)
is proportional to the timing offset and therefore can be used

to estimate it. However, in order to obtain a non-coherent

timing estimator, there are two similar problems that must be

treated: the symbol and channel phases. The solution to these

problems consists in two parts. First, let us suppose that we

have a real received sequence s(t). This hypothesis supposes

that a(m), IDFT{C(k)} and n(t) are real and that the chan-

nel has phase 0 or π. In such a case, independently of the

real value assumed by a(m), the phase that corresponds to

the delay τ is proportional to:

τ̂ ∝ arctan



















K/2−1
∑

k=1

Im{U(k, m,∆τ )}

K/2
∑

k=0

Re{U(k, m, ∆τ )}



















(8)

It is worth noting that we use only half of the DFT because

the other half is just the complex conjugate of the first half,

with exception of the terms k = 0 and k = K/2, since the

time signal is real valued.

Aiming a less computational intensive approach, i.e., no

division or arctan operation, we use:

τ̂ ∝

K/2
∑

k=0

Re{U(k, m, ∆τ)}

K/2−1
∑

k=1

Im{U(k, m, ∆τ)} (9)

Then, in order to make the previous hypothesis true, we

can see the received sequence s(t) as the result of the sum of

a real and an imaginary valued message and process them as



real valued signals. By processing each sequence (real part

and imaginary part of s(t)) with its equivalent decomposi-

tion of the spreading sequence c(i), which is the IDFT of the

sequence C(k), we can apply the estimator (9) in each se-

quence. Moreover, we can adopt a complex representation of

the signal R(k, m, ∆τ) and U(k) = R(k, m, ∆τ)C∗(k) if

we make use of the well known property of the DFT which

states:

DFT{Re{g(i)}} = 1
2 (G[k]K + G∗[−k]K)

DFT{jIm{g(i)}} = 1
2 (G[k]K − G∗[−k]K)

(10)

By substituting the above property on (9), the non-coherent

timing estimator e(m) is written as:

A(k, m) = U([k]K , m, ∆τ) + U∗([−k]K , m, ∆τ)
B(k, m) = −jU([k]K , m, ∆τ) + jU∗([−k]K , m, ∆τ)

e(m) = −
K/2
∑

k=0

Re{A(k, m)}
K/2−1
∑

k=1

Im{A(k, m)}

−
K/2
∑

k=0

Re{B(k, m)}
K/2−1
∑

k=1

Im{B(k, m)}

(11)
Finally, the error is integrated in order to estimate the de-

lay τ :

τ̂ (m + 1) = τ̂ (m) + µe(m) (12)

where µ is the adaptation step-size.

3.1. Improving the estimator performance

For small values of ∆τ , the real part of H(k, ∆τ) is almost

constant for every value of k. Nonetheless, the imaginary part

varies as a function of k. The absolute value of the imaginary

part grows as k rises until we fall in the region of aliasing

of the raised-cosine filter, where it decreases. The larger the

imaginary value, the larger the contribution to the timing off-

set estimation. Therefore, if we use this knowledge by apply-

ing a maximum ratio combining to the imaginary part of the

estimator, we can gain some robustness against noise.

The weighting coefficients are obtained for a small value

of ∆τ , since the estimator will be oscillating around ∆τ = 0.

We have chosen ∆τ = 0.1T . A smaller value has practically

no additional gain, since the correspondent values of W (k)
for each value of ∆τ are directly proportional to ∆τ when

∆τ/T is small.

Let us define the gain that is used to ponder the imaginary

part as:

W (k) = |Im{H(k, 0.1)}|, 1 ≤ k ≤ K/2 − 1 (13)

Thus, with A(k, m) and B(k, m) as in equation (11), the

enhanced estimator eW (m) is given by:

eW (m) = −
K/2
∑

k=0

Re{A(k, m)}
K/2−1
∑

k=1

W (k)Im{A(k, m)}

−
K/2
∑

k=0

Re{B(k, m)}
K/2−1
∑

k=1

W (k)Im{B(k, m)}

(14)

4. THEORETICAL PERFORMANCE ANALYSIS

We are interested in the normalized variance of the estimator

for its operation point, i.e., around ∆τ = 0. From [1], the

normalized variance σ2 is given by:

σ2 =
2BLT

S2

1

T 2

+∞
∑

m=−∞

E{e(i)e(i−m)|∆τ = 0}(1−µS)|m|

(15)

where S = ∂{E{e(m)}}
∂∆τ

∣

∣

∣

∆τ=0
and the normalized loop band-

width BLT = µS
2(2−µS) .

For ∆τ = 0, absence of multipath and additive white

Gaussian noise, E{e(i)e(i − m)|∆τ = 0} = 0 for every

m 6= 0. Therefore, equation (15) becomes:

σ2 =
2BLT

S2

1

T 2
E{|e(m)|2|∆τ = 0} (16)

Due to the non-coherent nature of the estimator, in or-

der to simplify the calculations we can assume without loss

generality that a(m) = ±1 with equal probability. In such

a case, after tedious calculation, we obtain the general for-

mula for any chosen code. But first, let us define the value of

E{|e(m)|2|∆τ = 0}:

E{|e(m)|2|∆τ = 0} = AB + CD (17)

where:

A= σ2
a

(

K/2
∑

k=0

|C(k)|2+|C([−k]K)|2

)2

+
Kσ2

n
2

(

4|C(0)|2+4|C(K/2)|2+
K/2−1
∑

k=1

|C(k)|2+|C([−k]K)|2

)

B=
Kσ2

n
2

(

K/2−1
∑

k=1

|C(k)|2+|C([−k]K)|2

)

C=
Kσ2

n
2

(

4|C(0)|2+4|C(K/2)|2+
K/2−1
∑

k=1

|C(k)|2+|C([−k]K)|2

)

D= σ2
a

(

K/2
∑

k=0

|C(k)|2+|C([−k]K)|2

)2

+
Kσ2

n
2

(

K/2−1
∑

k=1

|C(k)|2+|C([−k]K)|2

)

σ2
n = 1

2Es/No
with Es/No being the symbol to noise ratio.

Then, the value of the slope S = ∂E{e(m)}
∂∆τ

∣

∣

∣

∆τ=0
is:

S= −σ2
a

K/2
∑

k=0

{

|C([k]K)|2+|C([−k]K)|2
}

×
K/2−1
∑

k=1

Im

{

|C([k]K)|
2 ∂H([k]K,∆τ)

∂∆τ

∣

∣

∣

∣

∆τ=0

+|C([−k]K)|2
∂H∗([−k]K,∆τ)

∂∆τ

∣

∣

∣

∣

∆τ=0

}

−σ2
a

K/2−1
∑

k=1

{

−|C([k]K)|
2
+|C([−k]K)|

2
}

×
K/2−1
∑

k=1

Re

{

−j|C([k]K)|
2 ∂H([k]K ,∆τ)

∂∆τ

∣

∣

∣

∣

∆τ=0

+j|C([−k]K)|2
∂H∗([−k]K,∆τ)

∂∆τ

∣

∣

∣

∣

∆τ=0

}

(18)

and ∂H(k,∆τ)
∂∆τ |∆τ=0=−j2π k

KT F (k)+j2π K−k
KT F (K−k)



Hence, we obtain the theoretical performance of the pro-

posed technique by replacing equations (17) and (18) on (16).

The theoretical performance of the enhanced technique is

obtained by changing the terms B, D and the slope S to in-

clude the weighting by W (k), defined in equation (13). These

terms for the enhanced technique are given by:

B=
Kσ2

n
2

K/2−1
∑

k=1

W 2(k){|C(k)|2+|C([−k]K)|2}

D= σ2
a

(

K/2
∑

k=0

W (k){|C(k)|2+|C([−k]K)|2}

)2

+
Kσ2

n
2

(

K/2−1
∑

k=1

W 2(k){|C(k)|2+|C([−k]K)|2}

)

S= −σ2
a

K/2
∑

k=0

{

|C([k]K)|2+|C([−k]K)|2
}

×
K/2−1
∑

k=1

Im

{

W (k)|C([k]K)|2
∂H([k]K,∆τ)

∂∆τ

∣

∣

∣

∣

∆τ=0

+W (k)|C([−k]K)|
2 ∂H∗([−k]K,∆τ)

∂∆τ

∣

∣

∣

∣

∆τ=0

}

−σ2
a

K/2−1
∑

k=1

{

−W (k)
{

|C([k]K)|2+|C([−k]K)|2
}}

×
K/2−1
∑

k=1

Re

{

−j|C([k]K)|2
∂H([k]K,∆τ)

∂∆τ

∣

∣

∣

∣

∆τ=0

+j|C([−k]K)|
2 ∂H∗([−k]K,∆τ)

∂∆τ

∣

∣

∣

∣

∆τ=0

}

(19)

It can be already observed that when σ2
n tends to zero

the estimator variance of the proposed technique tends also

to zero. Therefore, in comparison to the time domain tech-

niques such as the early-late gate and Gardner detector [1],

the proposed technique does not suffer from self-noise. This

can be explained by the fact that this technique works with the

signal sampled at the Nyquist rate. Hence, when there is no

timing offset, there is no interchip or intersymbol interference

that are in the origin of the self-noise.

5. SIMULATION RESULTS

For all simulations, we use QPSK modulation. The estima-

tor variance is obtained by the average of the variance for

35 independent runs, each one with 1600 symbols. We also

use, for each run, a random channel phase uniformly dis-

tributed between 0 and 2π. The transmitter/receiver filter

was implemented with an oversampling equal to 8 and length

[−7T, 7T ]. The timing correction was done by reconstruct-

ing the receiver filter taking into account the estimated delay

τ̂ . The spreading code C(k) used in the simulations was ob-

tained by a pseudo-random sequence generated by the poly-

nomial p(x) = 1 + x + x6 initialized with [1 0 0 0 0 0].
To this sequence of 63 chips, it was appended one chip equal

to -1, totalizing K = 64 chips. It must be noted that other

codes with |C(k)| = 1 for every k would give the same per-

formance. We have effectuated simulations with cyclic pre-

fix sizes NCP = 0, 4 and 16. However, since the channel

has no multipath, the only effect that the cyclic prefix has is

a small performance degradation due to the augmentation of

the noise variance σ2
n, which is proportional to NT /K for a

given Es/No value. We have considered NCP = 0 for all

simulations shown in this paper.
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Fig. 2. Normalized timing variance for BLT = 0.01 and

additive white Gaussian noise

We first analyze the performance of the proposed estima-

tor for an AWGN channel. Figure 2 shows the normalized

timing variance for the roll-off factors 0.22 and 0.75. As we

can see, the simulation matches the predicted theoretical per-

formance of the estimator, except for very low ES/No. Such

behavior may be explained by the larger fluctuations of the es-

timated delay τ̂ , which creates more noise than predicted by

the theoretical performance analysis. Furthermore, the per-

formance of the proposed technique compared to the MCRB

decreases when the roll-off becomes large. This behavior is

similar to the Müller & Muller time-domain technique that

also works at Nyquist sample rate [1]. Finally, the enhanced

technique can provide more than 1 dB when compared to the

normal one. It is worth noting that when α tends to zero, the

difference of the proposed technique to the MCRB is equal to

1.5 dB and to the enhanced one is less than 0.1 dB. The simu-

lation results also corroborate with the absence of self-noise.

One considerable advantage of tracking the timing in the

frequency domain is the possibility to easily excise narrow-

band interference. This can be accomplished by applying the

channel matched filter to the received signal. In addition, we

can use a more pragmatic approach where we simply ignore

the subcarriers affected by the narrowband interference. In or-

der to illustrate the gains that can be achieved in this case, we

simulate a case with three narrowband interferers. These in-

terferers are generated by filtering white Gaussian noise with

an inverse notch filter with poles at 0.99ej 10π
64 , 0.99ej 56π

64 and

0.99ej 90π
64 and zeros at 0.85ej 10π

64 , 0.85ej 56π
64 and 0.85ej 90π

64 .

As illustrated in Figure 3, the narrowband interferers are 24dB

stronger than the additive white Gaussian noise. Figure 4

shows the normalized noise variance for this case.
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Fig. 4. Normalized timing variance for BLT = 0.01, roll-off

α = 0.22 and narrowband additive Gaussian noise

We found out that the excision generated by the matched

filter can provide a gain larger than 4.9 dB. When we just

ignore the subcarriers affected by the narrowband noise, i.e.

the subcarriers 5, 28, 45 and their left and right neighbors, the

gain is equal to 2.5 dB.

6. COMPUTATIONAL COST

The proposed technique is quite simple. Since the despread-

ing of the transmitted symbol, i.e., the K complex multiplica-

tion of R(k, m) by C∗(k) is obligatory, the complexity of the

proposed technique is reduced to 2 real multiplications and

K + 2 complex summations. The enhanced technique needs

additional K − 2 real multiplications. For comparison, an

equivalent frequency domain early-late gate technique pro-

posed in [6] for OFDM but that can be adapted for CDMA

needs 2K + 2 complex multiplications and K real summa-

tions.

The rejection of the narrowband noise has virtually zero

computational complexity cost, since the proposed timing tech-

nique can use the equalized signal obtained, in the context of

this paper, by the channel matched filter.

7. CONCLUSION AND PERSPECTIVES

In this paper we have presented a non-coherent timing syn-

chronization technique in the frequency domain for CDMA

systems. It is a simple computational technique that approaches

the modified Cramér-Rao bound when the roll-off of the trans-

mitter/receiver filter tends to zero. Due to its operation in

the frequency domain, it can easily excise narrowband noise

without additional cost, since it can use the equalized signal

used for symbol reception.

The technique proposed here can be adapted to a decision-

directed or data-aided joint phase and timing estimation mode.

It must also be noted that it can be used with orthogonal

frequency division multiplexing (OFDM) systems, where we

can use pilot subcarriers for non-coherent timing or joint phase

and timing estimation and/or all the data subcarriers in a de-

cision-directed joint phase and timing estimation mode.
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