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Abstract. 
In this work, we propose an adaptive decision.device based on 

a Kohonen network that can automatically generate the classes as- 
sociated with each symbol of a dn-QAM in the presence of non- 
linearities caused by the I/$ imbalance and additive Gaussian 
white noise, being also capable of compensating phase and gain 
variations produced by a time-varying flat-fading channel. Our 
proposal can achieve optimality in the maximum-likelihood sense 
with a small computational cost. Furthermore, due to the track- 
ing ability inherent to the devised scheme, there is no need for an 
automatic gain controller or a phase-locked loop. 

INTRODUCTION 

In complex envelope modulation signals, the demodulation process may give 
origin to a distortion known as I /Q  imbalance 141 may occur in the process 
of demodularing a signal with complex envelope i f  

1) The cosine and the sine used by the demodulat,or have not the same phase; 

2) The in-phase channel and quadrat.ure channel have different gains. 

This effect, which may cause considerable performance degradat,ion, can 
be modelled as a nonlinear distortion imposed to the baseband signal. 

Anot,her well known problem that arises in wireless communication system 
is the presence of fading. Due to the arrival of multiple delayed versions of the 
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transmitt,ed signal at the receiver, the signal may be combined in a destructive 
way, thus originating t,he phenomenon. The fading may vary in amplitude 
and phase over time as a result of the movement of the receiver/transmitter 
or other changes in the propagation environment. Therefore, these changes 
must, be tracked by the receiver to estimate correctly the transmitted signal. 

In this paper we propose a self-organizing map [l],[2] specially tailored to  
compensate t,he noxious effects introduced by both I /Q imbalance and the 
fading. 

SIGNAL MODEL 

The complex baseband signal representation is given by: 

z(t) = 2J(t)  + j zQ( t )>  (1) 
where zr( t )  and zQ(t)  are respectively the in-phase and quadrature real com- 
ponents of a 4=-QAM signal. 

The signal E ( t )  is then upconverted and we obtain the transmitt.ed signal: 

z( t )  = $? { z ( t ) e - j u n f }  = zr(t) cos(wot) - zQ(t)  sin(wot) (2 )  

where WO is the carrier angular frequency. 

Therefore, the received signal a t  the antenna can be written as: 
Firstly, we assume that the channel does not introduce any distortion. 

y(t) = A(t ){z I ( t )  cos(wot + O ( t ) )  - z ~ ( t )  sin(wot + O ( t ) ) }  (3) 

The signal y(t) is downconverted by a mixer and a local oscillator (LO) 
which provides: 

(4) 
Z L O J  = 2(1 + €) cos(wot - 4/2) 
ZLO,Q = -2(1 - c) sin(w0t + @/a) 

being E and 6, respectively, the gain and the phase errors. Multiplying (3) 
by (4) and processing t.he result, by a low-pass filter, we obtain the following 
baseband signals: 

( 5 )  
y r ( C  = (1 + d{zr(t)cos(d/z) + z~( t ) s in(0 /2)}  
Y Q ( ~ )  = (1 - E ) { z Q ( ~ )  cos(d/2) + sJ(t )  sin(d/2)} 

In matrix not,ation, we have: 

[ ;g 3 = [ l + t  

sin(4/2) ] [ zr(t) ] (cl 0 1 :E ] [ E::;:; cos(4/2) Z Q ( t )  

The received signal can also be written in complex baseband: 

G(t) = &(t) + /3Z*(t) (7) 
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where CY and are complex constants given by: 

( 8 )  
ry = cos(dj2) - j tsin(d/z) 
p =  ecos(4/2) +jsin($/Z) 

It  is worth noting that, there is no linear operation capable of correcting 
the complex baseband signal in (7). Nevertheless, if we process separately 
the signals defined in ( 5 ) ,  the I/$ imbalance can be easily eliminated. Such 
correction is achieved by finding the inverse matrix of 

and applying it to the y,(t) and y q ( t )  signals 

constellation. 
In figures 1 and 2, we show how t,he IJQ imbalance dist,orts the signal 
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Figure 1: 16-QAAI Gain error L = 0.3 Figure 2 16QAh4 Phase error Q = 30' 

Now, let the channel be: 

h(t)  = 8 ( F ( ( t ) e - j " ~ * }  (9) 

where Z(L) is a complex fading process with a Jakes spectrum. Therefore, 
if we represent j ( t )  in polar coordinates, i.e., F( t )  = A(t)ej'@), A(t) is the 
time-varying amplitude that follow a Rayleigh distribution and e ( t )  is a time- 
varying phase uniformly distribution between 0 and 2rr. It is straightforward 
to show that this channel causes no more t,han a rotation in the phase and 
a modification in the amplit,ude of the transmit,ted symbols. Hence, the 
received signal becomes, after downconversion: 

u ( t )  = 4 t ) U  + e)Izi(t)cos(@(t) + 4/2) +z,(t)sin(Q(t) + 4/21] 
yg ( t )  = 4 t ) U  - e){Zg(t)cOs(Q(t) - 4/21 - zr(t)sin(e(t)  - 4/2)} 

In matrix not,ation, we have: 

0 cos(@(t) + 4/2) sin(@(t) + #/Z) z,(t) 
1 - e  ] [ sin(-6(t) +O/Z)  cos(@(i.) -O/Z) ] [ zq( t )  ] [ ] = A(t )  [ liQ(t) 

(11) 
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Note that the correction is still done the same way as before. We have to 
estimate the transformation matrix, that now includes the fading, and invert 
it. The received baseband signal can still be obtained from the original 
message: 

SELF-ORGANIZING DECISION DEVICE 

In simple terms, the Kohonen self-organizing map can be conceived as a lin- 
ear neural network whose adaptation is performed by means of a competitive 
learning strategy. The process is simple: the distance between each input 
stimulus and the weights of all neurons is measured, being the winner the 
closest element. The parameter vector of t,his neuron .is then updated to- 
wards the presented pattern, a mechanism that engenders a division of the 
set of st.imuli into a number of distinct classes. In some cases, it might be 
desirable to  define a neighborhood of neurons that are adapted together with 
the winner. It is worth noting that the whole process is unsupervised, i.e., 
the classes are created in a blind fashion. 

Since the purpose of a decision-device is exactly to divide the complex 
plane into classes determined by the transmitted symbols, it is possible to  
envisage the application of a self-organizing map to its project. 

In order to  elaborate on this crucial issue, assume that the training phase 
produced a Kohonen network whose classes correspond with exactitude t o  t,he 
constellation. Thenceforth, only the competition stage will be maintained, 
being the classification task conducted by its outcomes, which; as shown in 
131, is equivalent to the modus operandi of a maximum-likelihood (b1L)-based 
decision-device. An interesting feature of the aforement.ioned t.raining scheme 
is that it. does not, depend on a priori knowledge of phase and gain. 

In the context we have hitherto out,lined, there st,ill remains a flaw: the 
imbalance correlates the in-phase and quadrature components, thus invalidat- 
ing t,he ML. framework. Fort.unat.elg, it is possible to estimate t.he parameters 
relevant to  modelling this effect, thereby recovering the orthogonality of bot,h 
noise and signal. However, before we discuss this issue in more detail, let us 
present a systematic account of our proposal: 

Ini t ia l  Steps: 

1. Choose an adequate number of neurons according to characterist,ics of 
the transmitted symbols. 

2. Transmit N times each symbol of t.he const.ellation. In this step, we 
need to  know t,he transmitt.ed sequence, which makes this step super- 
visioned. Once received, we make an arithmetic mean among the cor- 
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responding samples for each symbol, obtaining an  initial estimation of 
the received distorted constellation. Some particularization of this step 
can be done and they will he commented in next section. 

3. Use the estimates obtained in the previous step to init,ialize the neural 
network. 

Training: 

The objective of t,his phase is t,o refine the neuron weights before the decision- 
device starts to operate. 

1.  Take an  ensemble of NT received signal samples y (k )  for training 

2. For each vector y(k) ,  obtain the indes of the winner neuron by: 

i = a r g m i n ( ~ ~ w j ( k )  - y (k ) l / ' )  (13) 

where w,(k) is the weight vector of the j- th neuron in the instant k .  

3. Having thus obtained t.he index j ,  update t,he weight, vect,or of the 
corresponding neuron by: 

W l ( k + 1 )  = w , ( k ) + p [ y ( k ) - w , ( k ) l  (14 

where fi  is the ada,ptation step-size. 

4. If necessary, scramble the NT samples and ret," to 1 

Operation: 

After these steps: t,he net.work should be ready to play the role of a decision- 
device, which consists in determining the winning neuron and recovering the 
symbol associated with it. If the channel is time-varying, it might be desirable 
t o  continue adaptation according t,o steps 2 and 3 of the precedent phase. 

APPLICATION TO 4N-QAM SYSTEMS WITH I/Q IMBALANCE 

Akhough the proposed framework is generic for additive white Gaussian 
noise, henceforth we will restrict our analysis to t.he class of 4"-QAM mod- 
ulations, for symmetry reasons, and t o  the case with the  presence of I/Q 
imbalance, which correlates the I and Q components. A common feature of 
all members of t.his class is the possibility of dividing the set of symbols int,o 
four quadrants. A 16-QAA1, for instance, can be decomposed int.0 t.he follow- 
ing quadrants: 1){[1;1],[1:3],[3:1],[3:3]), 2){[-1;1]~~-1~3],[-3;1],~-3;3]}~ 3){\-1;- 
11,[-1:-3],[-3-111[-3;-31), 4){[1:-1~,[1~-3~,[3~-1~,[3~-3~), whose cent,ers of gravity 
(cg) are 1)[2,2], 2)[-2,2], 3)[-2,-2]: 4)[2,-21. Interestingly, these centers will 
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suffer the same dist.ortions experienced by the transmitted symbols, which 
opens a perspective: t o  estimate the parameters of the imbalance model 
from the position of the cent,ers of gravity. Notice that the organization in 
quadrants holds for all values of paramet.ers, except for E = 1 or 4 = m/4, 
n = 1,3: 5 and 7. Not,e also that t,he I/$ distortion is 180' symmetrical, i.e., 
t.he quadrants 1 and 3 suffers opposite distortions, the same as quadrant 2 
and 4. The phase distortion caused by the fading is 90" symmet,rical, i.e., the 
quadrant 2 suffers the same distort.ion of quadrant 1 but with 90" rotation 
and so on. These properties can be used to  simplify the initialization and 
adaptation steps, as we will show. 

During the initial phase, it is necessary t o  transmit only two different 
symbols of the constellat.ion, one per non-180°-symmetrica1 quadrant,. We 
assume that the highest. power symbols are transmitted in order to maximize 
the symbol-to-noise ratio (SNR). Then, we initialize the neurons assigned t o  
each quadrant and multiply their weights by a gain (defined by (maximal 
symbol amplit.ndeminima1 symbol amplitude)/maximal symbol amplit,ude) 
to estimate the centers of grai.ity of the received modulation. Note that 
if the symbols of the  quadrants 1 and 2 were t.ransmitted, the neurons of 
quadrants 3 and 4 a re  respectively 103 = -w1 and wq = -tu2 as a result 
of the symmetry of the l/Q imbalance. This symmetry can also he used in 
adaptation by constraining the updating process so that if the m-th neuron 
is the winner, the (m+l) mod 4 + I  neuron is updated by: 

w ( m + l ) m o d 4 + l ( k +  1 ) = W ( m t l ) m o d 4 + 1 ( a ) - ~ i y ( k ) -  Wm(k)l ( I s ?  
where mod means d e  modulus operator. Due t,o the symmetr? of the neurons 
and that, the conskaint keeps it during adapbation, a simpler operation is: 

W(ni+l) mod 4 + l ( k  + 1 )  = -wm(k + l) (16) 

This constraint has many advantages. First, it, limits the possibility that 
the same neuron could win for more than one quadrant. Secondly, it, alloivs 
faster convergence or a smaller step-size, minimizing the adaptation noise. 
Once t,he neurons have converged t,o t,he centers of gravity of the dist,orted 
signal, we can estimat,e the I/Q imbalance and the fading parameters, U' 

and p'. Using (12), two non 180° symmetrical neurons (?om and tu,) and its 
associated centers of gravity of the original constellation, which we call cg,, 
we have: 

can be obtained directly from t,he values of a' and : 
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Therefore, the corrected signal is obtained by: 

[ i Q ( k ) ] = [ :  bdk) 

Once we have the corrected signal, we apply the traditional hlL decision 
device to estimate the transmitted symbol. 

The comput,ational cost is not high, since only the inversion of a 2x2 
matrix (18) is needed. The other matrix inversion in equation (17) can be 
precomputed. 

It is noteworthy that the process of choosing the winner neuron does not 
take into account the correlation of I and Q noise components. Thereupon, 
the decision zones for all neurons are not optimal, which may lead t,o biased 
or wrong estimation of the centers of gravity in heavily distorted channels 
wit.h the presence of noise. 

PERFORMANCE AND SIMULATION RESULTS 

In order to compare the symbol error rate (SER) of the proposed technique 
with the theoretical SER of an AWGN channel without I/$ imbalance, we 
use a static channel \*.ith A ( t )  = 1 to maintain the sa,me relation of E,/iV, 
of an AWGN channel, 0 = 0:c = 0.1 and 4 = ~ / 1 8 .  We used 10 symbols 
to initialize each pair of neuron and 100 iterations to refine the weights with 
a st,epsize of 0.002. We also use a traditional receiver based on a perfect 
I'LL (phase-locked loop) and a perfect AGC (antomabic gain control) to 
benchnmrk our technique to a more traditional one. The results are shown 
in figure 3. 

Figure 3: SER vs EbIN, 

It is noticeable from figure 3 that the proposed technique matches the 
performance of a system without distortion. The performance of the hench- 
mark with the traditional PLL and AGC is considerably worse. For instance, 
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at 
The convergence is analyzed using A ( t )  = 1 , O  = O , t  = 0.1 ,# = 71/12 

and EbIN, = 100 dB, a scenario wherein the error is mainly due to  the 
adaptation/tracking process. We initialize the neurons a t  f414i and we use 
the following error to show the convergence: 

BER, there is a loss of more than 10 dB. 

. . . . . . .. . . ..., . . . . . ... .. 
. ,  . .  . .  

0 ~ 1 m I % o x m - ” ~ - ~  >a- ‘ I , ’ .  - 
Figure 4: Evolution of Error for static channel and weight initilization at +4 i 4i 

Evidently, t.he convergence speed depends greatly on the initialicat.ion. 
However, even with this bad initialization ( i 4  f 4 i )  the algorithm converged 
considerably fast for a stepsize of 0.02 (350 symbols approximately). 

The  next simulation shows, in figure 5 :  the error for a time varying channel 
over 200 independents trials for 16-$AM, c = 0.1, 4 = r / l8  and Eb/N, = 

100 dB, so that, the error is mainly due to the adaptation/tracking process. 
To asses the performance of the algorithm in a time-varying channel, we 
assumed t,hat there is a phase rotation eJziifTk, being fT = where T is 
the symbol period. The signal amplitude varies according to  the expression 
A(k)  = 1 +0.3cos(27ifTk). The adaptation stepsize is equal t o  0.02 and the 
neurons where initialized with the perfect values of the centers of mass. 

From figure 5 ,  we can see that the algorithm is able to  track the chan- 
nel variations, but the error is considerably high. As a matter of fact, the 
simulat.ions show that. it is not possible to t,rack channels much faster t,lian 
fT = for 16-QAM modulation. 

In order t.o show the blind estimation of the centers of gravity, we will 
analyze its convergence initializing t.he neurons a t  1 4 f 4 i  for l )A(t )  = l , B  = 
71/4, which represents t.he worst case of phase rotation, t = 0.1 and 4 = 71/18 
and 2)A( t )  = 1,O = a/4, 5 = 0.1 and 4 = 7119. For both simulat,ions (figures 
6 and 7), Eb/N, = 10 dB and adaption stepsize of 0.02. 

In figure 6: we have indicated the regions that are local minima of the 
algorithm. Note t,hat with a sufficient large step-size, the neurons were able 
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Figure 5:  Error for tracking a time varying channel 
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t o  escape from that region. However, in figure 7. which represents a more 
aggressive distortion, the neurons were not able to converge to the good s u  
lution. Firstly, they converged to local minima and thereafter jumped to 
another sub-optimal solution. This situation shows that blind convergence 
may not be very reliable in heavily-distorted systems, which renders imper- 
ative an initialization procedure with known symbols. 

CONCLUSION 

In this paper, we have proposed an adaptive decision device based in self- 
organizing maps to compensate I/Q imbalance and flat fading for 4"'-QAh'I 
modulation. Using t,he symmetry of the transmitted modulation and some 
specific characteristics of the channel and receiver impairments, we were able 
to optimize the technique for such impairment and achieve a relatively low 
computational cost algorit.hm. Moreover, we have shown by simulat,ions that 
our technique achieves optimal performance and can track the channel with- 
out the aid of a training sequence. Blind initialization is also possible but, in 
this case, optimal conliergence is not guaranteed. 

As a future work, we envisage to extend this technique t.o selective fading 
channels, using an equalizer to mitigate intersymbol interference and our 
technique to  estimate the I/Q imbalance. 
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