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Abstract- Adaptive Equalization is a classical technique for
mitigating ISI in unknown or time varying channels.  Decision-
feedback equalizer (DFE) is considered to be an efficient
approach in many types of channels where linear equalizers fail.
Unfortunately, it suffers from error propagation phenomenon.
In order to reduce such effect, the present paper deals with the
joint application of both equalization and decoding process in
the receiver.  The main contributions are the proposal of a new
joint DFE and decoding configuration which works in a blind
decision directed (DD) context and the study of the
corresponding error surfaces behavior, and the assessment of
the convergence rate. The proposed technique has shown to be
effective for the so-called bad channels class, which makes the
conventional DD-DFE ill-converge when its weights are
initialized with zeros.

1. INTRODUCTION

It is well known that intersymbol interference (ISI) is one
of the major impairments to achieve a higher capacity or a
data rate improvement in communication systems.  Adaptive
equalizer is a classical and efficient technique for mitigating
ISI in unknown or time varying channels.  The most
conventional approach employs a training sequence to adapt
the equalizer weights into an opened-eye condition, normally
using the LMS adaptive algorithm. Then the equalizer is
changed to the so-called decision-directed (DD) mode, in
which the effective information is transmitted.  However, in
some specific systems, the use of a training sequence may not
be practical. The adaptation process is then said to be
unsupervised and some more robust (blind) algorithms are
used.  In this case, only a few statistics characteristics of the
transmitted data symbols are known a priori.

Usually, the equalization can be achieved by a linear
transversal filter.  However, there are some channels that it
fails to equalize due to a long channel impulse response or
spectral nulls.  Normally, for these channels, a non-linear
structure called decision-feedback equalizer is used.
Unfortunately, the DFE suffers from the error propagation
phenomenon, which limits its performance.

Moreover, in modern digital communication systems, error
correction codes are used to counteract the effects of noise
and interference, aiming to achieve a more reliable
transmission.  With the advent of the Viterbi decoder, the use
of convolutional codes has become feasible. In 1982,
Ungerboeck has proposed a technique called Trellis-Coded
Modulation (TCM) where it is possible to achieve a coding
gain over an uncoded modulation, without increasing the
transmission bandwidth [9].

The present paper deals with the joint application of both
equalization and decoding process in the receiver, by taking
into account that a TCM scheme without interleaving is used
in transmission.  Reference [5] has proposed a first joint DFE

and decoding procedure for the case of supervised
equalization.  Such work has not provided any results
concerning convergence analysis.  The DFE equalizer was
employed since its recursive nature is particularly suitable for
dealing with the corrected symbols of a TCM code [5].

The main contribution of the present work are posed on
two steps: firstly, we propose a new joint DFE and decoding
configuration where the decided symbols of the survivor path
of the node with smallest metric are fed back directly from
the TCM decoder, instead of a memoryless decision device.
Secondly, we study the convergence of both joint procedures
by means of an error surface analysis, as well as in term of
the convergence rate.

Finally, we show that our new approach is even more
effective than the other alternative solutions proposed in
order to improve convergence in DFE equalizers, such as the
techniques as [5] or the use of soft decision devices [1,7].

In order to assess such results, this paper is organized as
follows.  In section 2, we make a brief explanation of the
DFE equalizer and pose the assumptions to be used in the
simulations. The joint DFE & decoding procedure is
introduced in section 3.  In sections 4 and 5 we present and
discuss the results.  The conclusions and perspectives are
briefly posed in section 6.

2. THE DD-DFE EQUALIZERS

In spite of its simplicity and suitability in several
applications, it is well known that linear equalizers suffer
from important limitations, among which a critical one is the
noise enhancement problem, in cases when the zeros of the
channel are close to the unit circle.  Due to its non-linear
nature, DFE equalizers are an interesting alternative in such
cases.  Its recursive structure is also appropriate in other
contexts, for instance when the channel presents a long
impulse response.  On the other hand, the performance of
DFE structure can be affected by the phenomenon of error
propagation.  Fig. 2 illustrates the DFE structure.  The DD-
LMS algorithm to be used in this case is given by:
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where x(n) and y(n) are the equalizer input and output
respectively; â(n) is the decided symbol, so that its past
values compose the vector â(n)=[â(n-1) â(n-2) ... â(n-N)]T,
which feeds the recursive and adaptive filter defined, at
instant n, by the weight vector b(n)=[b1(n) b2(n) ... bN(n)]T.
The weights are updated by means of the decision error e(n),
as given in (1).
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Fig. 1. DFE structure.

The analysis of convergence properties of the DD-DFE
can be found in [1,4,6 and 7].  References [1,6] provide a
class of channels that results in ill convergence when the
feedback filter weights are initialized with zeros.  Note that
this is the most natural value to be used as initialization, since
it guarantees convergence when the channel has an opened-
eye condition.  In this work, we deal with this class of bad
channels to show that error correcting codes provide better
decisions to the DD-DFE, so that it can converge to global
minimum.

The following assumptions were made:

Assumption 1:
The source alphabet is QPSK {±1±j} obtained by the

output of a convolutional encoder with rate R=½.  This
encoder is fed by an independent and identically distributed
bit sequence with p(0)= ½.

Assumption 2:
The channel has a finite impulse response and the feedback

filter matches the length of the channel postcursor response.
The channel has no precursor and the leading tap dominates.
Hence, we can define the vector h=[h0 h1 ... hN], composed by
N+1 elements of the channel impulse response, where h0=1
and |hi|≤1 for i=1,2,...N.  Note that such condition does not
imply in a minimum phase characteristic.  Finally the channel
is also considered to be noiseless.

Assumption 2 is very limiting for practical channels, where
precursors are normally present.  As a consequence of this
assumption, the feedforward (FF) filter is not useful, and
thereby it can be discarded.  Therefore we can restrict our
analysis to the feedback (FB) filter and to local minima
associated with error propagation.  Nevertheless, the
assumption is justified since a full theoretical analysis was
developed in [4], where both FF and FB filters were
considered.  However, this work did not take into account the
impact of error correcting codes in the joint adaptation,
which is the interest point of our work.  Such analysis is not
trivial and assumption 2 makes it more feasible.  Thereby,
further studies should be done in order to include precursor
ISI and corresponding FF equalizer.

3. JOINT DFE-DECODING PROCESS

The first joint DFE and convolutional decoder structure to
be used in this work is shown in Fig. 2.  It can be seen that
the feedback filter is divided in two parts, since the output of
the decoder is expected to be more reliable then the output of
the decision device.  However, the decoder has an intrinsic
delay.  For that reason, its output can only be used as the
input of the feedback filter if such delay is considered.

This scheme was firstly used in [5] with the objective of
reducing the error propagation effect after a training period.

In this work, we use the same idea but without a training
period, i.e., in blind operation.  The algorithm used for
adaptation is the DD-LMS given by (1).

We also propose a new structure depicted in Fig. 3, where
the decision device is no more employed and the survivor
path of the node with the smallest metric is fed back to the
FB filter.  This procedure gives better performance, since the
output of the decoder is more reliable than the decision
device, even with no decision delay. Moreover, the new
proposal can take advantage of delays larger than the
tentative decision delay, which is used to feed back one part
of the FB filter of [5].

Furthermore, the joint structure in Fig. 2 was originally
proposed to mitigate error propagation after training [5].
However, since we are interested in a blind adaptation
scheme, the feedback process in the adaptation algorithm is
also important. The DD-LMS algorithm used in our structure
has two types of feedback, the error calculation and the
equalizer’s input vector. We have seen that the feedback
process over the algorithm is more important than the
structure’s feedback. Nevertheless, the best performance is
achieved when both types of feedback are used, as pointed
out in section 4.

We tested two different convolutional codes with R= ½.
The first code has a polynomial generator [5 7] and the other
has [64 74] (octal representation) [8].  The QPSK modulation
uses the Gray code. This approach gives a simple trellis
coded modulation scheme.  The squared Euclidean distance
is used as the metric of the Viterbi decoder.
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Fig. 3. New joint DFE and decoding procedure.
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4. EFFECTS ON THE POLYTOPES OF THE PERFORMANCE

SURFACE

4.1 Avoiding Local Minimum in the Performance Surface

The channel to be considered in our first simulation is
given by h(z)=1+z-1-z-2.  We have chosen this non-minimum
phase channel because it is the worst case that we have found
for the proposed technique and belongs to the class of bad
channels defined in [1,6]. The error surfaces were obtained
by fixing the two equalizer weights and transmitting a long
sequence of about 3500 symbols.  If ergodicity is assumed, a
time average of the quadratic error can be calculated and
used as an approximation of the cost function for each fixed
pair of weights.  The procedure is then repeated for a
sufficient number of distinct weights, so that the surface
contours are enough refined to render the analysis of the
critical points. In Fig. 4, it is possible to observe the
polytopes regions in the equalizer parameter space bounded
by the hyperplanes defined by the nonlinear decision device.

It can also be observed that there is an undesired local
minimum close to the point (0.0 0.0).  Thus, the choice of
such usual initialization results in ill convergence.  This is
illustrated by the trajectory of the DD-LMS algorithm from
(0.0 0.0) to the local minimum in ≈ (-0.029,0.254), with a
step-size of µ=1x10-4.

Fig. 5 shows that the joint technique in [5] is able to
eliminate the undesirable local minimum that causes ill
convergence.   Note  that  no  local  minimum is  observed  in
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Fig. 4. DD-DFE error-performance surface for
h(z)=1+z-1-z-2 and µ=1x10-4.
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Fig. 5. Joint DFE & decoding procedure for
h(z)=1+z-1-z-2 with convolutional code generated by

polynomial [5 7], D=7, TD=1 and µ=1x10-4.

such figure.  The error calculation of the DD-LMS is
proceeded with  a delay of  7 symbols, using the output of the
decoder as desired signal.  The input vector of the DD-LMS
is the FB filter input delayed by 7 symbols.

In Fig. 6, we use only feedback of the decoder into the
adaptive algorithm, in order to show its importance.  In this
case, the decoder’s decision with a delay D is used to form
the FB input vector.  In comparison with Fig. 4 it can be seen
that the local minimum which attracts the algorithm
disappears.  Nonetheless, there is another local minimum that
was not observed in Fig. 5, but the algorithm is initialized
outside its attraction domain.  Another feature is that the
attraction domain of the global minimum has larger influence
over the region where the equalizer is initialized, when
compared again with Fig. 5.

On the other hand, the new proposal (Fig. 7) with both
algorithm and structure feedback, reveals the wideness of the
attractive domain of the global minimum, which is expected
to result in a better convergence, in comparison with Fig. 6.
The improvement over the error surface of Fig. 6 occurs
since the decoder can provide a smaller error rate than the
case where only the decision device feeds back.

The channel with spectral null h(z)=1+z-1+z-2 also can be
equalized without any problems, using the new joint
equalization and decoding procedure, as can be seen in figure
Fig. 9. In contrast, Fig. 8 confirms the convergence into the
local minimum when the conventional DD-DFE is used in
this kind of channel.
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Fig. 6. DD-DFE with decoder feedback only into the
algorithm. Convolutional code generated by

polynomial [5 7], D=7, h(z)=1+z-1-z-2 and µ=1x10-4.
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Fig. 7. New joint DFE & decoding procedure, with
convolutional code generated by polynomial [5 7],

D=7, h(z)=1+z-1-z-2 and µ=1x10-4.
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Fig. 8. DD-DFE error-performance surface for
h(z)=1+z-1+z-2 and µ=1x10-4.
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Fig. 9. New joint DFE & decoding procedure, with
convolutional code generated by polynomial [5 7],

D=7, h(z)=1+z-1+z-2 and µ=1x10-4.

In this channel, there is not a local minimum for the new
joint procedure as it was observed in Figs. 6 and 7.  By the
way, only a few classes of channels present a local minimum.
They are h(z)=1+z-1-z-2 and some similar channels such as
h(z)=1+0.8z-1-0.8z-2. Further studies are in course in order to
provide a more complete analysis of such behavior.

4.2 The effects of the convolutional decoder

References [1,6] point out that the DD-DFE has a
piecewise quadratic cost function, where there is only one
possible local minimum inside each polytope.  The DD-DFE
cost function for a given polytope P can be written as:

21
ˆˆ( ) ( ) ( ) ( )

2
T H

DDJ E a n n n
 = − − 
 

h a b aP (2)

where a(n)=[a(n) a(n-1) ... a(n-N)]T.  Thus, setting its
gradient to zero, we find the possible local minimum:
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The statistics E{⋅} are constants within a polytope, but they
assume different values for different polytopes.  Therefore,
they are piecewise constant.  Nonetheless, this is not true
when we use, for instance, a soft decision device, which
smooths the cost function [1]. Reference [1] states that these
statistics vary with the equalizer parameters and they tend to
approach perfect equalization condition as the algorithm
moves closer to the solution, rather than remaining fixed over
a large region as for the DD-DFE. We believe by analogy
that the use of joint equalization and decoding procedure

provides a similar behavior, despite the decoder returns
transmitted symbols.

However, the joint DFE and decoding technique is more
effective than using the soft decision device, since
convergence to the global minimum in more critical cases can
be attained (see Fig. 11 in the next section).  This better
performance appears to be related to the code correction
capability, even in critical situations where there are a long
sequence of errors, so that the code correction capability is
exceeded.  Even so, it does work!

Table 1. Spectral Null Channel, code=[5 7]

Error Rate
Decision

Delay
b= (0,0) b= (-0.29,-0.14) b= (-0.57,-0.36)

0 0.6148 0.3914 0.3573
1 0.5756 0.3834 0.3500
7 0.6457 0.3770 0.2998

Table 2. Channel [1 1 –1], code=[5 7]

Error Rate
Decision

Delay
b= (0,0) b= (-0.22, 0.29) b= (-0.41, 0.51)

0 0.4800 0.3457 0.3470
1 0.5062 0.3259 0.3484
7 0.4581 0.3433 0.3217

In tables 1 and 2, we have three configurations where the
error rate is obtained, fixing the filter weights.  The first
configuration is set in the initialization, the third is set in near
the border of the region that there is no more decision errors
and the second is set in the middle of these two
configurations.  As we can observe, the decoder does not
behave as expected: the error rate oscillates with the decision
delay and such oscillations tend to be smaller as the delay
increase.

Changing the code into [64 74] does not always bring a
better performance as should be expected.  Channels with
less ISI have presented a slight increase in performance when
using such code.  We believe that such phenomena are
related to the situation of these large error rates. The code
was not designed to handle so much errors, specially burst
errors.  Further studies must be carried out with other codes
and other modulations, in order to provide more general
conclusions.

5. CONVERGENCE RATE ASSESSMENT

Another important aspect to be taken into account is the
value of the adaptation step size µ.  It is known that the
algorithm may escape from the local minimum by increasing
the value of the step size [3].  In order to compare the
performance of conventional DD-DFE and the joint DFE and
decoding in terms of the adaptation step size, an example is
shown in Fig. 10.  The convolutional code was generated by
polynomial [5 7] and the channel was h(z)=1+0.4z-1

-0.2z-2+0.8z-3-0.7z-4+0.1z-5.  The same step-size was used for
both structures in each case. We have made an ensemble
average over 40 trials.

As it can be observed, the step size in Fig. 10a is too small,
so that the conventional DD-DFE remains in the local
minimum, while the joint structure converges toward the
optimal solution.  On the other hand, Fig. 10b shows a case
where conventional DD-DFE escapes from the local
minimum.  Nevertheless, we note that the joint DFE and
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decoding procedure converges significantly faster.
Additionally, Fig. 10c shows the worst case of gradient noise
due to the higher value of step size, which leads the code to
lose performance, so that it converge slower than the
conventional DD-DFE.  Note, however, that the value used
for the adaptation step size is very high and close to the limit
for which convergence is guaranteed and that the
conventional DD-DFE remains slower than the joint
procedure with the step size used in 10b.

Others solutions have been proposed in the literature in
order to search for the convergence to the desired global
minimum in DFE.  An interesting one is the use of soft
decision like a saturation device [1].  We tested such
approach with many types of bad channels and observed that
it converges to the desired global minimum for the majority
of them. However, for non-minimum phase channels,
specially channels with zeros located far from the unitary
circle, it fails to converge.

For h(z)=1+0.9z-1-0.8z-2 it converges, but it fails for
h(z)=1+0.95z-1-0.9z-2. A comparison with the joint and the
new joint DFE and decoding procedure is shown in Fig. 11.
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6. CONCLUSIONS & PERSPECTIVES

In this paper we have shown that it is possible to achieve
convergence to the desirable global minimum with the use of
the DD-LMS. Using the DFE structure together with DD-
LMS, there is a class of channels that presents ill

convergence when the feedback filter weights are initialized
with zeros.  We have shown that the use of error correcting
codes renders the convergence to the desirable global
minimum possible, even for channels belonging to this class.

Additionally, the proposed new joint DFE and decoding
has shown to be more effective than the one in [5], since it
deals with more reliable feedback symbols.

The convergence analysis was based on the error surface,
in order to study the behavior of the critical points, as well as
the convergence rate. The proposed technique has shown to
be rather efficient for the class of bad channels.

Further studies concerns the achievement of more general
result, like different modulation scheme. It is worth pointing
out that complete analytical results are extremely difficult to
obtain in such studied configuration due to the difficulties
imposed by the decoding with error propagation and residual
ISI. It is also in course a study with the constant modulus
algorithm.
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