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Abstract— In this paper, we make use of a blind adaptive linear
predictor for channel shortening in single input multiple output
(SIMO) channels. We compare our approach to the so-called
MERRY blind channel shortener. We assess through simulations
that our proposed approach provides faster convergence rate
and it better exploits the spatio-temporal diversity present in the
SIMO channels.
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SIMO, SOS, MERRY.

I. INTRODUCTION.
Multicarrier modulation is an attractive technique for

high-speed signal transmission and is currently used in
many standards, such as wireless local area networks (IEEE
802.11a/g/n), wireless metropolitan area networks (IEEE
802.16), digital video broadcasting (DVB) and digital audio
broadcasting (DAB), power line communications (PLC) and
digital subscribe line (DSL).

Several low-cost implementations of multicarrier modu-
lation, such as orthogonal frequency division multiplexing
(OFDM) and discrete multitone (DMT), make use of an
inverse fast Fourier transform (IFFT) for the modulation and
a fast Fourier transform (FFT) for the demodulation to create
orthogonal sub-carries. However, the orthogonality between
sub-carries is compromised in dispersive channels and both
interblock and intercarrier interference (IBI and ICI) may
appear. By inserting a cyclic prefix (CP) longer than the
channel impulse response, both types of interference can be
canceled and the effect of the channel can be represented
by a single complex-valued coefficient on each sub-carrier.
This channel distortion can be easily compensated through
a bank of one-tap equalizers in the frequency domain. It
can be obtained by means of simple channel estimation
techniques with training sequences or with pilot sub-carries.
For highly dispersive channels, the required CP is lengthy and
the insertion of a long CP reduces the system throughput.
One way of minimizing such impairment is to make use of a
channel-shortening equalizer. Such technique aims to provide
an effective channel, which is the convolution of the channel
with the equalizer, whose length is smaller than the CP.
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The adaptation of such equalizer can be done in a supervised
way, when a training sequence is available, or in a blind mode
where we exploit some of the signal characteristics that are
known a priori at the receiver. The main attractive of the blind
approach is that it does not need the transmission of a training
sequence and hence it may provide a larger system capacity.

There are many different blind criteria [1]. Notwithstanding,
most of the usual criteria, like decision-directed (DD) and
constant modulus (CM) [1], are not suitable in time-domain
for multicarrier-modulation. This is due to the absence of a
finite alphabet and also to the fact that the transmitted signal
approaches a Gaussian distribution. Other criteria based on
second order statistics (SOS) have been specially tailored
to this context as [2] and [3]. The MERRY (Multicarrier
Equalization by Restoration of Redundance) [3] exploits the
redundancy inserted by the CP to achieve channel equalization.
Although the MERRY algorithm is simple to implement and
is globally convergent in the SISO case, it only updates the
equalizer coefficients once per block and thus it may take more
time to converge than other techniques that iterates at sample
rate.

In this paper, we propose to use a blind adaptive linear
predictor for channel shortening in single input multiple output
(SIMO) channels context. We assess through simulations that,
when compared to the MERRY algorithm, our proposed
approach provides faster convergence rate and better exploits
the spatio-temporal diversity present in the SIMO channels.

This paper is organized as follows. In Section II, we describe
the system model. Section III presents our proposed approach
based on the linear predictor for SIMO channels. In section IV
we describe the MERRY algorithm and discuss its drawbacks
in the SIMO context. Section V states how to assess the
system performance. Simulation results are shown in Section
VI. Finally, the conclusions and perspectives are stated in VII.

II. SYSTEM MODEL.

The baseband system model in figure 1 depicts one transmit
antenna and 2 receiver antennas for clarity, but in general
we assume the use of P receiver antennas, representing a
generic SIMO channel. Each of the N sub-carriers modulates a
QAM signal. Modulation is performed via inverse fast Fourier
transform (IFFT) and demodulation is accomplished via FFT.

In order to transform the linear convolution of the trans-
mitted symbol with the channel into a circular convolution,
a CP of length ν is insert at the beginning of each OFDM
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Fig. 1. System Model. (I)FFT (inverse) fast Fourier transform, P/S: parallel
to serial, S/P: serial to parallel, +CP: add cyclic prefix, -CP: remove cyclic
prefix, FEQ: frequency-domain equalizer.

symbol. Generally, the order of ν is a value between N
16

and N
4 [4]. A circular convolution is equivalent to a point-

wise multiplication in the frequency domain. This can be
equalized by the FEQ (frequency domain equalizer), which
is a bank of complex scalars. In order to have a circular
convolution, the channel length must be no longer than the
CP length. If we cannot comply with such constraint, channel
shortening is performed by a time-domain equalizer (TEQ)
whose coefficients are represented by w.

After the CP insertion, the last ν samples are identical to
first ν samples in the kth symbol, i.e.:

x (Mk + i) = x (Mk + i + N) i ∈ {0, ..., ν − 1} (1)

where M = N + ν is the total symbol duration and k is the
symbol index. The data received by the pth antenna is modeled
by

up(i) = hT
p x(i) + np(i), (2)

where hp = [hp(0) hp(1) . . . hp(Lh − 1)]T is the sub-
channel, x(i) = [x(i) x(i− 1) . . . x(i− Lh + 1)]T is the
transmitted signal, np(i) is the additive white Gaussian noise
and Lh is the length of the pth sub-channel.

The pth TEQ output is given by

yp(i) = wT
p up (3)

where wp = [wp(0) wp(1) . . . wp(Lw − 1)]T is the sub-
equalizer, up(i) = [up(i) up(i− 1) . . . up(i− Lw + 1)]T

is the input of the pth sub-equalizer and Lw is its length.
The equalized data, fed to the demodulating FFT, is given

by

y(i) =
P−1∑
p=0

yp(i) =
P−1∑
p=0

wT
p up = wT u (4)

where

wT =
[
wT

0 , wT
1 , . . . , wT

P−1

]
(5)

and

u(i) =
[
uT

0 (i) , uT
1 (i) , . . . , uT

P−1 (i)
]T

(6)

Each of the P channels has Lh taps, each of the P sub-
equalizers has Lw taps, and each of the effective channel cp =
hp ? wp has Lc taps, where Lc = Lh + Lw − 1 and ? denotes
linear convolution.

III. THE PROPOSED TECHNIQUE

According to the Gardner’s work [5], identification of both
magnitude and phase of a communication channel with second
order statistics (SOS) is possible if we explore the cyclosta-
tionary properties of the modulated signals. SOS-based blind
techniques can be divided in two approaches, namely subspace
methods and linear prediction methods. In this paper we use
the second method in an adaptive framework.

Given the equation (2), we can rewrite it in the vector form

uf (i) =
Lh−1∑

λ=0

h(λ)x(i− λ) + n(i) (7)

where uf (i) = [u0(i) u1(i) . . . uP−1(i) ]T is the vec-
tor of P received samples at time i by the P anten-
nas. The vector n(i) = [n0(i) n1(i) . . . nP−1(i) ]T

corresponds to the P noise samples and h(λ) =
[h0(λ) h1(λ) . . . hP−1(λ)]T , λ ∈ {0, 1, . . . , Lh − 1}, is
the vector with the λth samples of each sub-channel. The
equation (7) describes a SIMO system.

The following vector represents the concatenation of all sub-
equalizer input vectors:

UfLw
(i) =

[
uT

f (i) uT
f (i− 1) . . . uT

f (i− Lw + 1)
]T

(8)

This vector can be obtained by:

UfLw
(i) = HXLh+Lw−1(i) + NLw(i) (9)

where XLh+Lw−1(i) =
[x(i) x(i− 1) . . . x(i− Lh − Lw + 2)]T is the transmitted
signal vector and

NLw(i) =
[
nT (i) nT (i− 1) . . . nT (i− Lw + 1)

]T is
the associated noise vector. The matrix H is the channel
convolution matrix, which is a LwP × Lh + Lw − 1 block-
Toeplitz matrix given by

H =




h(0) · · · h(Lh − 1) 0
. . . . . .

0 h(0) · · · h(Lh − 1)


 (10)

An estimate of the transmitted signal is obtained by filtering
the received sample vector by the equalizer, as follows:

x̂(i− d) = FH
Lw

UfLw
, (11)

where d is the equalization delay and FH
Lw

is the LwP × 1
vector given by

FLw
=

[
wH

f (0) wH
f (1) . . . wH

f (Lw − 1)
]H

(12)

where wf (l) =
[
wT

0 (l) wT
1 (l) . . . wT

P−1(l)
]T .

In the absence of additive noise, perfect equalization is
attainable according to the Bezout Identity [6], with the
constraint that the P sub-channels have no common zeros.
So that is possible to obtain a zero-forcing (ZF) equalizer that
leads to the following result

FH
Lw

H = [01×d 1 01×Lh+Lw−d−2] (13)

Based on the assumption of absence of additive noise, it
can be shown that, for d = 0, the ZF equalizer corresponds
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to a multichannel forward linear predictor [7] for which the
adaptive implementation is presented in the following.

Let us define the multichannel forward prediction error as

ef (i) = uf (i) − AH
Lw−1UfLw−1(i− 1)

=
[
IP − AH

Lw−1

]
UfLw

(i)
(14)

where ALw−1 is the (Lw − 1)P × P matrix with the optimal
multichannel forward prediction error coefficients and I is a
P X P identity matrix. The P X 1 forward prediction error
variance matrix is shown [6] to be given by:

E
{

ef (i)eH
f (i)

}
= σ2

xh(0)hH(0) (15)

Both ALw−1 and E
{

ef (i)eH
f (i)

}
can be extracted from the

autocorrelation matrix of the received signal UfLw
. It is shown

in [6] that the following relation holds:
[
IP − AH

Lw−1

]
H = h(0) [1 0 . . . 0] (16)

The above equation can be rewritten in the following from:

h#(0)
[
IP − AH

Lw−1

]
H = [1 0 . . . 0] (17)

where h#(0) = hH(0)
/
‖h(0)‖2.

The rightmost term of (17) is indeed the ideal combined
channel equalizer response corresponding to d=0. Hence, the
ideal ZF equalizer is obtained of (17) and is given by

FH
Lw

= h#(0)
[
IP − AH

Lw−1

]
(18)

Based on the solution described above, an adaptive version
has been derived in [6]. The forward prediction error vector
is estimated at each iteration and the forward prediction
coefficients matrix is updated with the least mean square
(LMS) algorithm. The estimation of the forward prediction
error matrix (15) can be carried out by

Ef (i) = λEf (i) + (1− λ)ef (i)eH
f (i) (19)

where 0 ¿ λ < 1 acts as a forgetting factor.
The adaptive procedure developed in [7] and used in this

paper can be then summarized as follows:

A. Initialization i = 0

The forward prediction error matrix is initialized with
Ef (0) = δIP and ALw−1(0) = 0.

B. For i = 1, 2, 3, · · ·

ef (i) =
[
IP − AH

Lw−1

]
UfLw

(i) (20)

ALw−1(i + 1) = ALw−1(i) + µUfLw
eH
f (i) (21)

C. Estimation of h(0)

An estimate ĥ(0) of h(0) is obtained taking the column of
(19) with the largest norm.

D. Obtaining the ZF equalizer.

FLw
(i) =

[
IP

−ALw−1

]
ĥ(0)∥∥∥ĥ(0)

∥∥∥
(22)

IV. ANALYSIS OF MERRY ALGORITHM IN THE SIMO
CONTEXT.

The MERRY algorithm [3] assumes that a CP is used in
the transmission and that the source sequence is white before
the CP insertion. If the effective channel is no longer than
CP and in the absence of noise, then the last sample in
the received symbol will be equal to the last sample in the
received CP of the symbol. This characteristic can be seen
in the following example. Consider three transmitted OFDM
symbols as depicted in figure 2.

Symbol (k-1) Symbol (k) Symbol (k+1)

OFDM Symbols

CP

Xk(i+N-3) Xk(i+N-2) Xk(i+N-1)Xk(i+N-3) Xk(i+N-2) Xk(i+N-1) Xk(i)

Fig. 2. Three transmitted OFDM symbols.

In the absence of noise and given that the channel has h0 =
[1 1 1]T , Lh = 3, P = 1 and the CP has length Lh, we
have the received signal after the convolution as represented
in figure 3.

uo(i)x(i)

h0
Circular ConvolutionXk(i+N-2) Xk(i+N-1) Xk(i) Xk(i+N-3) Xk(i+N-2)Xk-1(i+N-1) Xk(i+N-3) Xk(i+N-2) Xk(i+N-1) Xk(i+N-4) Xk(i+N-3)Xk-1(i+N-2) Xk-1(i+N-1) Xk(i+N-3) Xk(i+N-2) Xk(i+N-5) Xk(i+N-4) Xk+1(i+N-3)Xk(i+N-1)Xk(i+N-2) Xk+1(i+N-2)Xk+1(i+N)Xk(i+N-1)Xk(i+N-1)Xk(i+N-2)Xk(i+N-3)

u0(i+ -3) u0(i+ -2) u0(i+ -1) u0(i+ ) u0(i+ +N-3) u0(i+ +N-2) u0(i+ +N) u0(i+ +N+1)u0(i+ +N-1)Xk(i+N-3) x(i)      h0
X(k)H0(k)

Fig. 3. Transmitted OFDM symbols and convolution with the channel h0.

The MERRY algorithm cost function [3] is given by

JMERRY (w, ∆) = E
{
|y(i + ∆)− y(i + N + ∆)|2

}
(23)

where ∆ is a delay, which corresponds to the boundaries
between successive OFDM blocks after equalization. The
adaptive algorithm is obtained by the stochastic gradient
descent of (23) and by applying a power constraint into the
equalizer coefficients, in order to avoid the trivial solution
w = 0:

For symbol k = 0, 1, 2, · · · ,
ũ(k) = u(Mk + ν − 1 + ∆)− u(Mk + ν − 1 + N + ∆)
eM (k) = wT (k)ũ(k)
ŵ(k + 1) = w(k)− µMeM (k)ũ∗(k)

w(k + 1) = ŵ(k+1)∥∥ŵ(k+1)
∥∥

(24)



VI INTERNATIONAL TELECOMMUNICATIONS SYMPOSIUM (ITS2006), SEPTEMBER 3-6, 2006, FORTALEZA-CE, BRAZIL

where w and u are defined in the equations (5) and (6)
respectively.

The gradient descent algorithms are sensitive to the filter
coefficients initialization, specially for blind techniques. For
the P = 1 case, a standard initialization is a “center-spike”
initialization in which the adaptive filter coefficients are equal
to zero with exception of the center coefficient that is set to
one, i.e., wi = [0, . . . , 0, 1, 0, . . . , 0]T . For P > 1, one of the
sub-equalizers can be initialized with a center-spike and the
rest of the equalizer coefficients can all be set to zeros. Given
this type of initialization and considering the cases where
Lh ≤ CP , we can shown that the MERRY algorithm will
not move from initialization because the true gradient is zero
unless Lh is longer than the CP.

The optimal value of ∆ is the one that minimizes (23).
Since the transmission delay is equal to zero, the value of ∆
is equal to the delay generated by the center-spike. In this
case, the error can be written as

eM (k) = [0 . . . 1 . . . 0, 01, 02, . . . , 0P−1] ũ(k) (25)

ũ(k) = [ζ0, . . . , γCenter Spike, ζLw, . . . , ζPLw−1] (26)

where ζi is a random variable with zero mean and
γCenter Spike = n0(Mk+ν−1+∆)−n0(Mk+N+ν−1+∆)
is the difference between two uncorrelated zero mean Gaussian
noise in the position of the center spike. Then, we have

eM (k) = wT ũ(k)
= n0(Mk + ν + ∆)− n0(Mk + N + ν + ∆)

(27)
The true gradient of (24) is given by

E
{
eM (k)ũ∗(k)

}
=

[
0 . . . , 2σ2

n, 0, . . . 0
]T

, (28)

where all elements are equal to zero except the element in the
center-spike position, 2σ2

n. Then, it holds for the first iteration,
given by:

ŵ(1) = w(0)− µME{eM (k)ũ∗(k)}
= [0, . . . 0, 1− 2µσ2

n, 0, 01, 02, . . . , 0P−1]T
(29)

and
w(1) = ŵ(1)∥∥ŵ(1)

∥∥
= [0 . . . 1 . . . 0, 01, 02, . . . , 0P ]T

(30)

and so on for the other iterations.
This shows that in the context where Lh ≤ ν, the MERRY

algorithm does not move away its coefficients from the initial-
ization. Therefore, it cannot exploit the diversity provided by
the SIMO channels. This behavior is verified in the simulations
of the section VI.

Other initializations may be used, but there is no guarantee
that they will provide additional performance. For instance,
let us suppose that h0 = 1 and h1 = −1. If we initialize
both sub-equalizers w0 and w1 with center spikes, the initial-
ization would be already a solution to (23) but the equalizer
output would be constituted only by noise, since the signal is
canceled.

V. PERFORMANCE ASSESSMENT

In order to assess the performance of each technique, we
make use of the SNR measurement proposed in [8]. In this
method, the received signal can be partitioned into the desired
signal, an IBI component, and noise components. The desired
signal and the IBI (interblock interference) components are
linear filtered versions of the same transmitted signal by
hdesired

eq and hIBI
eq . These filters are obtained by the following

steps:

A. Find the equivalent channel h̃

h̃ =
P−1∑
p=0

hp ? wp (31)

where h̃ = [h̃(0) h̃(1) . . . h̃(Lh + Lw − 1)]T

B. Find the window g(k, ρ)

g(k, ρ) =
{

1, ρ ≤ k ≤ ρ + ν
0, otherwise

(32)

where ρ is an integer value that maximizes the value of∑Lh+Lw−1
k=0 |g(k, ρ)h̃(k)|2

C. Obtaining hdesired
eq and hIBI

eq

hdesired
eq (k) = g(k, ρ)h̃(k)

hIBI
eq (k) = (1− g(k, ρ))h̃(k)

(33)

In frequency domain, the desired signal is multi-
plied by Hdesired

eq (i) =
∑N−1

k=0 hdesired
eq (k)e−j2πki/N

and the IBI component is multiplied by HIBI
eq (i) =∑N−1

k=0 hdesired
eq (k)e−j2πki/N . Since both desired signal and

IBI component are originated by the transmitted signal x(i),
their variance in the ith sub-carrier is σ2

X |Hdesired
eq (i)|2 and

σ2
X |HIBI

eq (i)|2, where σ2
X is the variance of the QAM symbols

X(i) that are modulated by the IFFT and that generates
the transmitted signal x(k). We also assume that the IBI
interference can be modeled as a gaussian noise.

The independent noise components np(k) with variance
σ2

n/N of each sub-channel are filtered by their respective sub-
equalizers. Therefore, the noise variance in frequency domain
for the ith sub-carrier is given by σ2

n

∑P−1
p=0 |Wp(i)|2, where

Wp(i) =
∑N−1

k=0 wp(k)e−j2πki/N .
Thus, the SNR for the ith sub-carrier is given by

SNR(i) =
σ2

X

∣∣Hdesired
eq (i)

∣∣2

σ2
n

∑P−1
p=0 |Wp(i)|2 + σ2

X

∣∣HIBI
eq (i)

∣∣2 (34)

We obtain the theoretical bit error rate (BER) values of
each sub-carrier using the corresponding SNR values. Finally,
the ultimate performance measure is obtained by taking the
average BER of all sub-carries.



VI INTERNATIONAL TELECOMMUNICATIONS SYMPOSIUM (ITS2006), SEPTEMBER 3-6, 2006, FORTALEZA-CE, BRAZIL

VI. SIMULATION RESULTS

In order to evaluate convergence rate and BER, we define
two channels groups as shown in table I. The Group I presents
two minimum phase sub-channels and Group II shows two
non-minimum phase channels. The simulation parameters are
N = 64, Lw = 15, the transmitted data is 4 - QAM with σ2

X =
2. In this paper the matched filter bound (MFB) was employed
as a benchmark and we assume perfect synchronization.

Groups Sub-channels Coefficients

I
h0 0.49 -0.34 0.25 0 0 0 -0.20 0.05
h1 0.49 0.39 0.29 0 0 0 0.20 0.15

II
h0 0.22 -0.27 0.38 0 0 0 -0.22 0.05
h1 0.38 0.49 0.44 0 0 0 -0.27 0.16

TABLE I
SUB-CHANNELS COEFFICIENTS

A. Convergence rate

The mean square error (MSE) curves presented in 4 were
obtained using ν = 6, SNR= 20dB and the channel defined
in Group I. In order to make a fair comparison between
the techniques, we have applied the MSE defined in the cost
function of the MERRY algorithm (23) into the output of
the predictor. The MSE curves are obtained by an ensemble
average of 150 trials. The adaptations steps of each technique
were adjusted to make both of them converge to the same
MSE floor.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000
10

−4

10
−3

10
−2

samples

M
S

E

MERRY

Predictor

Fig. 4. Convergence curves of the MERRY and Predictor techniques.

For a wireless environment, in which the channels changes
significantly every 10 or 20 blocks [4], the MERRY algorithm
can have difficulty tracking the changing environment. In
this context, the predictor is more advantageous because it
is updated at sample rate, besides its faster convergence rate,
as shown in figure 4.

B. Minimum phase channels

The BER for both techniques were obtained after the con-
vergence of each algorithm. We have used a small adaptation
step to minimize the influence of adaptation noise. The figures
5 and 6 present the results for the channel described in Group
I, table I.
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Fig. 5. BER for minimum phase sub-channels and ν = 6.
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Fig. 6. BER for minimum phase sub-channels and ν = 10.

In both cases, ν = 6 and ν = 10, the performance superiority
of the predictor over the MERRY technique is significative,
specially for higher SNR values. With ν = 10, there is no need
to shorten the channel. Nevertheless, the diversity in the space-
time context is an important parameter to improve the SNR
of each sub-carrier and then the BER. As shown in section
IV, for ν ≥ Lh, the MERRY algorithm does not move away
its coefficients from the initialization. On the other hand, the
predictor tries to whiten the signal independently of the CP
length and, in the process, can exploit the implicity spatio-
temporal diversity. Clearly, the fact that both sub-channels are



VI INTERNATIONAL TELECOMMUNICATIONS SYMPOSIUM (ITS2006), SEPTEMBER 3-6, 2006, FORTALEZA-CE, BRAZIL

minimum phase, also contributes to the good performance of
the predictor.

C. Non-minimum phase channels

We now analyze the BER performance using the non-
minimum phase sub-channels described in Group II, table
I. The results are shown in figures 7 and 8.
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Fig. 7. BER for non-minimum phase sub-channels and ν = 6.
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Fig. 8. BER for non-minimum phase sub-channels and ν = 10.

Contrarily to the minimum phase case, the performance of
the predictor is considerably degraded in this non-minimum
sub-channels scenario (figs. 7 and 8). In the process of equaliz-
ing the received signal, the predictor causes a bad combination
of the non-minimum phase sub-channels that incurs in a loss
of spatio-temporal diversity. This loss is evidenced in fig. 8,
where the performance of the predictor is always worse than
the MERRY algorithm, although it captures only the first sub-
channel.

VII. CONCLUSIONS AND PERSPECTIVES

In this paper, we propose to use a blind adaptive linear
predictor to provide channel shortening in a space-time context
for OFDM signals.

Compared to the so-called MERRY algorithm, it can offer
faster convergence since it operates at sample rate, contrary to
the MERRY algorithm, which adapts at OFDM symbol rate.

In terms of channel diversity, which is intrinsically provided
by the SIMO channel, the MERRY algorithm may not exploit
it when the CP length is larger than the channel length. On the
other hand, simulations suggest that the predictor can exploit
it on minimum phase channels and then obtain a better BER
performance.

The proposed technique suffers from performance loss in
non-minimum phase sub-channels due to the minimum phase
equalization nature of the predictor. We envisage the use
of a cascade forward-backward predictor to overcome such
problem. Additionally, the performance analysis over time-
varying channel must be examined.
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