
 
 

 

  

Abstract—In this work, we propose an evolutionary-like 
approach to the problem of blind adaptive spatial filtering that 
is based on the decision-directed criterion and on the dopt-
aiNet, an artificial immune network conceived to perform 
multimodal search in dynamic environments. The proposal was 
tested under static and time-varying undermodeled channel 
models, and, in all cases, its ability to find and track a solution 
close to the Wiener global optimum was attested. The obtained 
results reveal that the dopt-aiNet may decisively enhance the 
performance of adaptive arrays in scenarios built from 
elements that are representative of some aspects of real-world 
communication systems.    

I. INTRODUCTION 
N many real-world applications, it is of particular 
relevance to separate signals associated with multiple 

users of a given systemic resource or to restore an 
information signal corrupted by the presence of interferers 
and noise. The fulfillment of these objectives depends on the 
availability of a number of distinct measurements, the role of 
which is to engender some sort of diversity. In purely spatial 
problems, this diversity emerges from the placing of an 
adequate number of sensors in different positions, since the 
physical properties of the environment will be responsible, 
as a rule, for combining the signals in a manner that will 
tend to be different for each element. Therefore, it might be 
possible, by processing the sensor outputs in a rational way, 
either to model the medium through which the messages are 
sent or to extract the subjacent sources of information. 

In digital communications, problems of this kind are very 
common due to the pervasive requirement that several users 
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share limited resources in an orderly way, i.e., without 
degenerating into a noxious interference process. A 
widespread solution to achieve this aim is the use of an 
adaptive antenna array, a device formed by a set of 
antennas ordered in a chosen geometry (usually linear or 
planar) and endowed with adjustable gains, as shown in Fig. 
1. 
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Fig. 1. Adaptive antenna array 

 
It can be said that the array works as a spatial filter, 

because an adequate choice of its parameters can either 
amplify or cancel signals coming from distinct directions. 
Consequently, the structure is able to separate signals of 
interest from undesirable interferers, exactly in the spirit of 
the problem we posed. 

Albeit the described array is a potentially useful tool, a 
crucial issue is yet to be addressed: how can its parameters 
be adjusted in order to produce a certain desired response or 
behavior? An immediate possibility is, given the directions 
of arrival (DOAs) of all signals, build, in conformity with 
some mathematical criterion, a response that conveniently 
captures or cancels each one of them. This is, for instance, 
the essence of the Frost [1] and Applebaum [2] criteria. 
Another possibility is to formulate a criterion in which a 
desired signal is used to adapt the array parameters via a 
conventional mean-square error (MSE) cost function, which 
is, in simple terms, the modus operandi that characterizes 
the Wiener approach [3]. Both strategies, nevertheless, share 
a crucial inconvenient property: they are essentially 
dependent on information that is not necessarily available at 
the receiver. In some cases, it can be impossible or 
undesirable from a systemic point of view to have access to 
information that is not necessarily available at the receiver. 
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Therefore, it is quite appealing to consider the possibility of 
employing an adaptive criterion that depends exclusively on 
generic statistic features, being, therefore, unsupervised. 
Fortunately enough, criteria of this kind exist and have been 
applied to the spatial filtering problem with success [4]. 
Perhaps the most widely used class of blind criteria is that of 
the Bussgang algorithms [5], of which the decision-directed 
(DD) and the constant modulus (CM) techniques are 
emblematic representatives. 

Although Bussgang techniques are undeniably solid 
paradigms for spatial filtering, their use, nevertheless, 
requires attention, particularly in an undermodeled case, in 
which there are more source signals than elements of the 
antenna array. In this case, the involved cost functions will 
possess local minima, i.e., some source signals will be more 
easily extracted than others and, moreover, some signals 
may not be recoverable at all. This means that the 
optimization problem associated with the spatial filtering 
task will be multimodal in essence, wherefore conventional 
gradient-based optimization algorithms may become 
inappropriate if optimal performance is required. 

In addition to the problem of multimodality, in mobile 
communications there is another practical difficulty: the 
channel may be time-varying, i.e., the characteristics of the 
signals that arrive at the spatial filter may change with time. 
This may occur, for instance, due to the existence of fading 
[6], a phenomenon that may significantly reduce the 
amplitude of some or even all of the incident signals. 

In this work, we propose the use of an artificial immune 
network, called dopt-aiNet [7], to tackle these two problems. 
The dopt-aiNet is particularly suited to this task for two 
reasons: (i) it is an optimization tool conceived to solve 
highly multimodal problems; and (ii) it contains mechanisms 
devised to work with time-varying cost functions. Thus, the 
joint employment of the dopt-aiNet and a Bussgang cost 
function may produce a filtering paradigm in which the best 
solution is attained and tracked in an undermodeled and 
time-varying scenario. The performance of this proposal will 
be firstly tested in terms of global convergence in a static 
environment and, afterwards, a dynamic element will be 
introduced to allow the tracking capabilities of the dopt-
aiNet to be put to the test. 

The work is organized as follows. In section II, we 
present the fundamentals of the spatial filtering problem 
together with an explanation of the proposed approach. In 
section III, the dopt-aiNet is explained in detail, while, in 
section IV, the results are presented. Finally section V 
contains the conclusions and final remarks. 

II. BLIND SPATIAL FILTERING 
In accordance with the description provided by Fig. 1, the 

output of an antenna array can be written as a linear 
combination of the signals captured by its N elements: 

 ∑
−

=

=
1N

0k
kk )n(xw)n(y  (1) 

where xk(n) is the signal captured by the k-th antenna of the 
array and wk is the complex gain associated therewith. 
Equation (1) can be rewritten as 
 )n()n(y T xw=  (2) 
where w = [w0 w1 … wN-1]T is the parameter vector of the 
array, x(n) = [x0(n) x1(n) … xN-1(n)]T is its input vector and 
(.)T is the transpose operator. In a purely spatial 
environment, the input vector can be related to the 
transmitted information signals s(n), to which we shall also 
refer as sources, through the expression 
 )n()n( Hsx =  (3) 
where 
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where d is the distance between the elements of the array, λ 
is the wavelength of the carrier used to modulate the 
transmitted signals and θi is the direction of arrival of the  
i-th signal; the vector  
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contains samples of all M sources taken at instant n. Careful 
attention should be paid to the N×M matrix H; its i-th 
column corresponds to the so-called steering vector 
associated with the DOA of the i-th source signal. The 
steering vector is a direct expression of the manner whereby 
the disposition of the antennas in the array (in this work, we 
will always assume that this disposition is linear and 
uniform) defines the time of propagation between different 
antennas and the phase delay it originates.  

A crucial problem in the above context is that of finding 
the parameter vector w which propitiates the recovery of a 
given source si(n). As we have outlined in the introduction, 
there are basically two classes of techniques capable of 
achieving this aim: that of supervised techniques, of which 
the Wiener criterion is the main representative, and that of 
blind techniques, among which we highlight the decision-
directed (DD) criterion. 

A. The Wiener Approach 
The Wiener criterion, which can be considered the 

cornerstone of the optimal filtering theory, is founded on a 
measure of mean-square error between a desired signal, 
d(n), and the actual output of the array, y(n). The cost 
function that incorporates this idea is [3]: 
 [ ]2

W )n(y)n(dEJ −=  (7) 

being E[.] the statistical expectation. It can be demonstrated 
that the parameter vector which minimizes JW is 
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the so-called Wiener solution. In (8), 

 R = E[x(n)xH(n)] (9) 

is the correlation matrix, where (.)H denotes the Hermitian 
transpose, and 

 p = E[d*(n)x(n)] (10) 

is the cross-correlation vector. It is important to remark that, 
when the Wiener criterion is applied to a spatial filtering 
problem, the desired signal can be chosen to be any of the 
existing sources si(n): in fact, there will be M possible 
Wiener solutions. 

When N ≥ M, i.e., in the case in which there is a number 
of elements in the array greater than or equal to the number 
of transmitted signals, it is possible to choose a set of 
parameter vectors that allows a perfect recovery of all 
existing sources. Therefore, under these circumstances, all 
Wiener solutions will be associated with a null residual 
mean-square error. On the other hand, when N < M, that is, 
in an undermodeled case, the multiple Wiener solutions will 
no longer be equivalent; as a matter of fact, some solutions 
will be better (in the MSE sense) than others, and it is 
possible that some sources be irrecoverable. This reveals 
that an undermodeled scenario gives rise to a multimodal 
Wiener filtering problem, a fact that will be of great 
importance in our subsequent reasoning. 

B. The Decision-Directed Criterion 
The Wiener approach, a theoretical construct of 

undeniable solidity, possesses, notwithstanding, a feature 
that can make its application rather difficult in some 
practical cases: the need for a reference signal. This very 
feature is behind the proposal of blind or unsupervised 
techniques, the objective of which is to employ statistical 
information instead of pilot samples as the main reference in 
the optimization task. 

A member of the class of Bussgang techniques will be of 
particular interest to us in this work: the decision-directed 
(DD) criterion, whose cost function is [3][5]: 

 [ ]{ }2
DD )n(y)n(ydecEJ −=  (11) 

where dec(.) represents the mapping performed by the 
decision-device of the communication system. The rationale 
of the DD cost function is to replace the unavailable pilot 
signal with the estimate generated by the decision-device, 
whose aim is to recover the “digital character” of the signal 
processed at the receiver. JDD is known to be a multimodal 
function with two classes of minima: “good” minima, which 
correspond to Wiener solutions capable of perfectly 
restoring one of the sources, and spurious minima, which are 
solutions that do not allow the proper recovery of any source 
[5]. 

The “good” Wiener-like solutions, which are the only 
configurations of practical value, emerge when the estimate 

produced by the decision-device is identical to one of the 
sources, i.e.,  

 dec[y(n)] = si(n) (12) 

When N  ≥ M, all solutions of this kind are ideal Wiener 
solutions; in such case, JDD = JW = 0. Thus, the DD cost 
function will be formed by these minima and some spurious 
minima for which JDD > 0 – we do already envisage a 
scenario in which a gradient-based technique may lead to 
unsatisfactory performance. 

However, an even more complex scenario takes place 
when N < M. Under this condition, some of the Wiener 
solutions, albeit not ideal, appear in the DD cost function as 
“good minima”. Moreover, once more, the class of spurious 
minima, which are worse than the “good” minima, will be 
present. Therefore, we have a scenario in which there are 
multiple minima and only one Wiener-like solution is 
globally optimal. 

The problem of spatial filtering generates a particularly 
challenging optimization task in the undermodeled case, 
and, as a consequence, any global search requirement will 
be more stringent therein. Furthermore, this case has a 
considerable practical appeal, as a methodology that is 
robust to undermodeling should work well in a great number 
of cases of interest. 

C. The Proposed Approach 
Let us consider for a while the steps we have taken so far. 

After having defined the necessary models, we presented the 
Wiener criterion, which straightforwardly revealed the 
characteristics of the spatial problem: it is multimodal, since 
there are several sources that can be recovered and, in 
addition to that, when there are more sources than sensors, 
each solution is, as a rule, associated with a distinct MSE. 
This state of things is also manifest in the decision-directed 
criterion, which contains spurious solutions that, in a certain 
sense, “enhance the multimodality” of the spatial filtering 
problem. 

We may thus infer from this initial explanation that an 
approach devised to ally robustness to optimal performance 
in generic environments would have to possess the 
following features: 

1) To be unsupervised, as a wide scope of application is 
highly desirable. 
2) To contain global search mechanisms, since the blind 
spatial filtering problem can be, particularly if 
undermodeled scenarios are considered, highly multimodal.  

The accomplishment of these requirements certainly 
generates an efficient methodology, but, if we want to 
increase significantly its applicability to problems of a more 
realistic nature, it is desirable to include a third feature: 

3) The subjacent global search procedure must be robust to 
changes in the cost function. 
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Such a demand can be justified in practical terms: in 
many communication systems, the characteristics of the 
medium responsible for conveying the information signals 
may possess a strongly variant character [6]. Another 
important issue arises, for instance, in mobile 
communications: it is likely that the number of sources vary 
in time, which would modify the signal model described in 
Eq. (3). These considerations lead us to a conclusion: any 
viable approach should be prepared to deal with time-
varying systems and models [8]. 

In this work, we propose a formulation that is potentially 
able to meet the entirety of these demands. The proposal is 
founded on two pillars: a) the DD cost function, which, as 
discussed above, contains, inter alia, the best available 
Wiener solutions; and b) the dopt-aiNet [7] – an artificial 
immune system capable of performing global search with 
great efficiency and, moreover, endowed with mechanisms 
devised to enhance its performance in time-varying 
problems. Our goal is to obtain a methodology that is 
efficient in static and dynamic environments and that 
performs well in terms of global convergence in 
undermodeled scenarios. However, before we proceed to a 
detailed performance analysis, let us study in detail the dopt-
aiNet. 

III. AN ARTIFICIAL IMMUNE NETWORK FOR OPTIMIZATION 
IN DYNAMIC ENVIRONMENTS 

The field of research of artificial immune systems (AIS) 
[9] has followed the tendency of evolutionary algorithms 
and devoted major efforts to the proposal and validation of 
robust techniques for solving multimodal and dynamic 
optimization problems. This can be justified on two bases: 
(i) the importance of the application domain; and (ii) the fact 
that the vertebrate immune system, which inspired the 
development of AIS, is very efficient in adapting itself to 
dynamic environments. Disease-causing agents continually 
change their shapes, forms of attack and many other 
attributes aiming at invading the organism. Based on some 
of the biological immune mechanisms of host defense, 
simple evolutionary-like immune algorithms have been 
devised and studied in the context of global, multimodal and 
dynamic optimization [7][10][11][12]. 

In de França et al. [7], the optimization version of an 
immune network model (opt-aiNet) was improved and 
extended to deal with multimodal dynamic environments. 
The modified algorithm, named dopt-aiNet (opt-aiNet for 
dynamic environments) is depicted in Fig. 2. 

The algorithm starts by initializing a random population 
of cells containing Ninitial solution vectors of dimension D 
(each vector contains the real and imaginary part of the N 
coefficients of the array; thus, D = 2N) and an initial rank 
number that will be explained later. Inside the main loop, 
every cell is evaluated and then each one generates Nc 
clones (exact copies) of themselves. 

 

Function [C] = dopt-aiNet(Nc,range,σs,f,max_cells) 
C = random(range) 
While stopping criterion is not met do 

fit = f(C) 
C’ = clone(C,Nc) 
C’ = mutate(C’,f) 
C = select_clones(C’,f) 
C’ = clone(C,Nc) 
C’ = one-dimensional(C’,f) 
C = select_clones(C’,f) 
C = gene_duplication(C,f)  
For each cell c from C do, 

If c improved,  
c.rank = c.rank + 1 

Else 
c.rank = c.rank – 1 

End 
If c.rank == 0, 

Mem = [Mem, c]  
End 

End 
Avg = average(f(C))  
If the average error does not stagnate 

return to the beginning of the loop 
else 

cell_line_suppress(C, σs) 
C = [C; random(range)] 

End 
If size(C) > max_cells, 

suppress_fitness(C)  
End 

End 
End 

Fig. 2. The dopt-aiNet algorithm 
 

For every clone, a Gaussian random mutation is performed: 

 Gcc α+='  (13) 

where G is a vector composed of random elements generated 
by a Gaussian distribution with zero mean and standard 
deviation 1=σ . Additionally, α represents a step-size 
calculated via a line search algorithm called “golden 
section” [13], which is, in theory, capable of finding a value 
close to the optimal one. 

Subsequently, each cell (or solution vector) is improved 
with two other mutations introduced in [7]: the one-
dimensional mutation and the gene duplication mutation. 
The one-dimensional mutation treats one direction at a time, 
thus making a finer search on the area surrounding the cell. 
The directions are defined by a diagonal matrix with a 
Gaussian random number on its non-zero elements and the 
unitary vectors +1 (vector with all elements equal to 1) and 
−1. The gene duplication mutation replaces the current value 
of a given element in the cell by the value of another 
randomly selected element if this action improves the 
fitness. When this process ends, the final vector is a new cell 
that will be introduced in the cell population. 

After the mutation procedures, each cell will have an 
increase or decrease on its rank value depending on whether 
it has been improved or not, and, when this rank reaches 
zero, this cell will be moved to a separate population called 
“Memory Population” and will remain there only for the 
suppression process and the final results. 

At this point, the average results of the present and 
previous iteration are used to measure the stagnation of the 
algorithm, and, if it is still improving its results, the process 
is repeated from the beginning of the loop. Otherwise, the 
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cell similarities are calculated and those which present a 
high similarity are suppressed. After suppression, new cells 
are randomly created and introduced in the population. The 
Cell Line Suppression algorithm, introduced and better 
described in [7], is based on the fact that cells belonging to 
the same local optimum should be detected and submitted to 
suppression, so that only the best one remains. In the 
maximization problem illustrated in Fig. 3, the points P1 and 
P2 are associated with the same local optimum, while P3 is 
associated with a different one and must remain after the 
suppression phase. P1 will be eliminated even receiving a 
better individual evaluation when compared to P3. 

The notation “line suppression” is motivated by the 
initiative of estimating the relative position of every pair of 
points by comparing the functional values at intermediate 
points with the corresponding values produced by a straight 
line between the points under analysis. Indeed, returning to 
the illustrative example of Fig. 3, the straight line connecting 
P1 and P3 and the straight line connecting P2 and P3 have 
nothing to do with the original function, which can easily be 
detected by sampling intermediate points. On the other hand, 
the straight line connecting P1 and P2 will be very close to 
the original function, and this fact can be used to infer that 
they belong to the same local optimum. 
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Fig. 3. Illustrative example of the Cell Line Suppression algorithm in a 

multimodal scenario. 
 
Finally, if the population size grows enough to reach a 

certain maximum number of cells, the worst individuals will 
be removed from the population for the sake of 
performance. 

 

IV. SIMULATION RESULTS AND DISCUSSION 
Simulations under two different scenarios were carried 

out in order to evaluate the performance of the proposed 
approach to the problem of spatial filtering using a linear 
adaptive antenna array. The first scenario (sc1) is 
characterized by the presence of signals (Sigs. 1 to 4) 
coming from angles with elevation of 30°, 0°, 45°, and 60°. 
The second one (sc2), a critical scenario due to the 
proximity of the involved directions of arrival, is formed by 
signals coming from elevation angles of 30°, 35°, 40°, 45° 

and 50° (Sigs. 1 to 5). Firstly, both scenarios will be 
analyzed in a context in which the channel model is static; 
afterwards, they will be modified to emulate time-varying 
environments, in which the desired signals have their 
amplitudes altered during the observation time. 

In all cases, the linear antenna array is formed by 
isotropic elements uniformly spaced with half of the 
wavelength, and there are more incoming signals than 
elements in the array. This case, as discussed in Section II, is 
‘undermodeled’, and it is important to remark that it poses a 
difficult problem to the adaptive algorithms classically 
utilized in spatial filtering, insofar as global convergence is 
concerned. In both instances (static and dynamic) of the first 
scenario, the array has 3 elements, while, in the second 
scenario, 4 elements were employed.  

In all simulations, the signal-to-noise ratio (SNR) is set to 
20dB, and we assume that the transmitted samples are i.i.d. 
(independent identically distributed) and belong to a 2-PAM 
(Phase-Amplitude Modulation) constellation (−1/+1) with 
unit power. The decision-directed (DD) cost function is 
estimated by means of a time window composed of 50 
consecutive samples of the received signal. Other important 
parameters are shown in Table I. 

 
TABLE I 

GENERAL SETTINGS 

Parameters Static Scenario Dynamic Scenario 

Initial population 10 10 
Number of clones per 
mutation 

10 10 

Maximum number of 
cells in the population

80 80 

Iterations 650(sc1) and 
450(sc2) 

650 

Number of runs 20 1 
 
Since, in this work, all the transmitters are assumed to 

produce signals with identical amplitude, any variation in 
their gain could be related to static attenuation or 
fluctuations due to fading, both of which are typical 
phenomena in communication systems [6]. In the static 
channel model that forms the basis of the first scenario, all 
signals have unit gain, except for the signal whose DOA is 
45o, the amplitude of which is 0.6. In the static model of the 
second scenario, all signals have unit gain, except for the 
one associated with the DOA of 60o, whose gain is 0.4. 

The time-varying channel model was built from abrupt 
amplitude variations. In the first scenario, they occur every 
150 iterations (starting from n = 100), and, in sc2, after 250 
iterations and, subsequently, every 150 iterations. The time 
evolution of the amplitudes is given in Tables II and III. In 
accordance with the link between DD and Wiener criteria, 
discussed in Section II, we evaluate the performance of the 
proposed strategy having the best Wiener solution as the 
main reference. 
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TABLE II 
TIME EVOLUTION OF THE AMPLITUDES – FIRST SCENARIO 

Sig Angle Amplitude 
1 – 100 

Amplitude 
101 – 250 

Amplitude 
251-400 

Amplitude 
401-end 

1 30° 1 0.9 0.85 0.8 
2 0° 1 0.6 0.2 0.1 
3 45° 0.6 0.8 0.92 1 
4 60° 1 1 1 1 

 
The performance of the optimization algorithm will be 

assessed in three different ways: 1) by observing the time 
evolution of the gain of the spatial filter whose parameters 
are those associated with the best individual for all DOAs; 
2) by comparing the radiation pattern produced by the best 
individual with that originated by the best Wiener solution; 
and 3) by considering the convergence profile of the DD 
cost during the course of the simulation. 

 
TABLE III 

TIME EVOLUTION OF THE AMPLITUDES  – SECOND SCENARIO 
Sig Angle Amplitude 

1 – 250 
Amplitude 
251-400 

Amplitude 
401-end 

1 30° 1 0.4 0.1 
2 35° 1 0.8 0.7 
3 40° 1 0.7 0.6 
4 45° 1 0.4 0.4 
5 50° 0.4 1 1 

 

A. First Scenario – Static Case 
Firstly, let us analyze the performance of the dopt-aiNet 

in the static version of the first scenario. In this case, it is 
possible to demonstrate that the best Wiener solution is 
originated by the choice of Sig. 2 as the desired signal. We 
ran the dopt-aiNet algorithm 20 times and, in all trials, the 
best individual produced a configuration very close to the 
optimal. In order to illustrate this assertion, let us study in 
more detail one particular run, which we consider to be 
representative of the average behavior of the optimization 
tool. In Fig. 4, we show the time evolution of the gains 
associated with the best individual of the population in the 
DOAs of the four sources. 

As Fig. 4 reveals, a configuration close to the optimal was 
attained in less than 25 iterations: the best individual 
captures Sig. 2 with a gain close to unity and significantly 
attenuates the other sources. Fig. 5 contains the radiation 
patterns generated with the best individual and with the 
optimal Wiener solution. In both cases, Sig 2 is adequately 
recovered and the other signals are almost completely 
cancelled; furthermore, the similarity between these curves 
attests the efficacy of the optimization process. 

In Fig. 6, we present the evolution of the decision-
directed (DD) cost of the best individual in an average of 20 
runs. This figure confirms the convergence profile 
delineated by Fig. 4 and, moreover, reveals that the quality 
of the solution attained after the transients is similar to that 
of the best Wiener solution (the optimal Wiener cost is, in 
this case, equal to 0.0038). Therefore, we conclude that the 
dopt-aiNet performed very well in this initial test. 
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Fig. 4  Time evolution of the spatial response– First scenario (static) 
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Fig. 5  Radiation patterns – First scenario (static) 
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Fig. 6.  Evolution of the DD cost – First scenario (static) 

B. Second Scenario – Static Case 
Now, let us analyze the simulation results obtained in the 

static version of the second scenario. In this case, the 
optimal Wiener solution is the one that corresponds to a 
situation in which Sig. 1 is the desired signal. Once more, in 
all 20 runs the performance of the best individual generated 
by dopt-aiNet was close to the optimal. In Fig. 7, the time 
evolution of the best individual in a typical simulation is 
shown; it is noticeable that the proximity of the DOAs gave 
rise to a harder optimization task: the ideal configuration is 
attained only after 100 iterations. 

In Fig. 8, the radiation patterns of the best individual and 
of the optimal Wiener solution are presented. They are 
similar, but not as similar as those presented in Fig. 5; this 
discrepancy has not precluded the capture of Sig. 1 (that was 
done in the correct direction but with smaller amplitude) 
and, moreover, is justifiable in the light of the closeness 
between the DOAs. It is also important to observe the 
pattern produced by the dopt-aiNet in the angles associated 
with the others signals and compare it with the one 
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generated by the Wiener solution in the same directions. 
Only at 35º and 45º the dopt-aiNet produces an amplitude 
that is higher than the Wiener amplitude, but the values are, 
notwithstanding, such that the signals are properly 
cancelled. It is relevant to keep in mind that, in this 
situation, restriction-based methods such as the one 
proposed by Frost [1] would not be practical due to 
undermodeling. 
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Fig. 7.  Time evolution of the spatial response– Second scenario (static) 
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Fig. 8  Radiation patterns – Second scenario (static) 

 
At last, in Fig. 9, we present the evolution of the DD cost 

in an average of 20 runs. The curve confirms the 
convergence behavior anticipated by Fig. 7 and, moreover, 
its steady-state behavior confirms our analysis of Fig. 8. 

C. First scenario – Dynamic Case 
The static analysis we have just carried out confirmed that 

the dopt-aiNet is an optimization tool capable of performing 
multimodal search with very high global convergence rates. 
Now, we will attempt to verify if its efficiency is preserved 
in the time-varying scenarios described in Tables II (first 
scenario) and III (second scenario). It is important to remark 
that, in this dynamic stage of our analysis, we will not make 
use of multiple runs to assess the performance of the 
optimization tool. 

Firstly, let us assume that the communication channel 
obeys the model described in Table II. The amplitudes are 
supposed to vary stepwise. In order to facilitate our study, 
we present, in Table IV, the MSE of the best Wiener 
solution in all regions of the time-varying model, as well as 
the desired signal that generates them. 
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Fig. 9.  Evolution of the DD cost – Second scenario (static) 

 
TABLE IV 

MSE OF THE BEST WIENER SOLUTION-FIRST SCENARIO 
Iteration 1-100 101-250 251-400 401-end 

MSE-Wiener 0.0038 0.0158 0.1285 0.0932 
Captured Sig 2 2 4 4 

 
In Fig. 10, we present the time evolution of the gains 

associated with the best individual. It is interesting to notice 
how the dopt-aiNet responds promptly and adequately to the 
variations: the algorithm converges in a few iterations to a 
situation in which the correct signal (Sig. 2) is recovered; 
after the first transition, the algorithm takes 50 iterations to 
attain, once more, a solution close to the ideal; the second 
transition introduces a more dramatic change – the optimal 
desired signal changes from Sig. 2 to Sig. 4 – but the 
algorithm appropriately modifies the radiation pattern of the 
spatial filter in no more than 20 iterations; finally, the last 
transition barely alters the curves. This good convergence 
behavior is confirmed by Fig. 11, which shows the evolution 
of the DD cost. This figure also reflects the differences 
between the residual MSEs shown in Table IV. 
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Fig. 10  Time evolution of the spatial response– First scenario (dynamic) 

 

D. Second Scenario – Dynamic Case 
In Fig. 12, we have the evolution of the response of the 

adaptive array when the communication channel obeys the 
model described in Table III. Once more, the dopt-aiNet had 
a good performance: after an initial convergence similar to 
that presented in Fig. 8, the expected signals were properly 
recovered. The characteristics of the best Wiener solutions 
are as shown in Table V. Notice that, in accordance with the 
ideal case, Sig. 1 and then Sig. 5 are recovered in their 
respective intervals. 
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Fig. 11 Evolution of the DD cost – First scenario (dynamic) 

     
TABLE V 

MSE OF THE BEST WIENER SOLUTION-SECOND SCENARIO 
Iteration 1-250 251-400 401-end 

MSE-Wiener 0.0088 0.0116 0.0052 
Captured Sig 1 5 5 

 
The first transition, which modifies the desired signal, 
generates a transient of approximately 30 iterations, after 
which the algorithm captures Sig. 5 with a gain close to 
unity and attempts to cancel the other signals; when the 
second transition takes place, the algorithm demands 
approximately 50 iterations to converge again to a good 
solution. Fig. 13 reveals that the DD cost is almost 
constantly kept in a low level. 
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Fig. 12  Time evolution of the spatial response– Second scenario (dynamic) 
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Fig. 13.  Evolution of the DD cost – Second scenario (dynamic) 

V. CONCLUDING REMARKS 
The objective of this work was to present a new 

evolutionary-like approach to the problem of adapting the 
parameters of an antenna array in undermodeled and time-
varying scenarios. In order to achieve this aim, we proposed 

the use of the DD criterion and of a multimodal search tool 
specially tailored to operate under dynamic cost functions – 
the dopt-aiNet. A conjunction of this sort is very promising, 
since it allies an unsupervised formulation to an algorithm 
that is capable of avoiding local minima. Firstly, the 
proposal was tested in two distinct static scenarios, and, in 
both cases, a solution with characteristics similar to those of 
the optimal Wiener solution was obtained in all runs, 
indicating the solidity of the search technique. In a second 
stage, the performance of the dopt-aiNet was studied under 
two dynamic channel models and, in both cases, the 
immune-inspired algorithm proved itself capable of allying 
search potential to a very satisfactory tracking ability. 
Therefore, we are led to conclude that the approach is sound 
and can be useful in practical applications in which optimal 
performance is a stringent requirement; on the other hand, it 
is important to remark that the computational cost of the 
dopt-aiNet is significantly higher than the cost of a gradient-
based algorithm, which establishes a compromise that must 
be taken into account by the system engineer. 
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