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Abstract. In th is  work we present a new paradigm for unsuper- 
vised nonlinear equalization based on prediction-error fuzzy filters. 
Tests in  different linear channel scenarios are carried out i n  order 
to assess the performance of t h e  equalizer. T h e  results show that 
the proposal is solid and may provide a performance close to that 
of a Bayesian equalizer. 

INTRODUCTION 

The need for optimal performance and the continuous systemic refinement 
are the main reasons behind the growing interest in nonlinear equalization. 
This interest, together with advances in the field of computational intelligence 
and nonlinear filtering, account for a solid research corpus, which attests the 
relevance of the field. 

Usually, nonlinear equalizers are adapted with the aid of a pilot signal, 
i.e., in a supervised fashion. This is quite natural. since the usual test of 
structures and algorithms must be carried out in an environment as simple as 
possible. Furthermore, the assumption of supervised training is reasonable in 
some contexts and also gives rise to a more propitious scenario for optimality 
analysis. 

However, a general nonlinear filtering paradigm should not rely on super- 
vised learning, since a reference signal may not be available in all cases. This 
is the motivation behind the proposal of unsupervised equalization criteria. 
Although criteria based on signal statistics work well on the adaptation of 
linear filters, it is not. certain that they will assure the correct adaptation of 
nonlinear filters. Ironically, this kind of problem arises exactly from the great 
approximation potential of nonlinear structures. 

Therefore, it becomes imperative to  look for unsupervised equalization 
criteria adequate to the problem of nonlinear filtering. In particular Ca- 
valcante et al. [l] demonstrated that a prediction approach can be effective 
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in a linear channel context. Given the theoretical solidity of this formulation, 
we consider it a reliable basis to build upon a unsupervised equalization 
paradigm, what is indeed the main objective of our work. 

We propose a framework based on a fuzzy filtering prediction structure 
and three adaptation techniques: a modified k-means clustering algorithm, a 
procedure for rule generation and a classical Recursive Least Squares (RLS) 
algorithm. We will test our proposal with different channels and compare it 
with the Bayesian optimal criterion. 

This paper is organized as follows. In section 2> we present a basic back- 
ground on adaptive equalization and nonlinear prediction. The fuzzy struc- 
ture and the adaptation procedure are presented in sections 3 and 4. Section 
5 brings the results and section 6; our conclusions. 

ADAPTIVE EQUALIZATION AND NONLINEAR PREDICTION 

The main objective of a communication system is to  assure proper infor- 
mation interchange between a transmitter and a receiver, both of which are 
interconnected by a channel, as shown in Figure 1. This picture also estab- 
lishes the notation to be used in the present work. The channel is responsible 
for a certain level of degradation of the message transmitted, often leading 
to unacceptable bit error rates (BE%). 

fl(xl 

4 Channel 

Figure 1: Simplified h4odel of a Communication System. 

A common countermeasure to this problem is the use of an equalizer. i.e., 
a filter specially designed to compensate the noxious effects of the medium. 
Two questions then arise. 1) What filtering structure should be chosen to  
play the role of the equalizer? 2) How to appropriately adjust the parameters 
of the filter? 

A linear filter is the common answer to  the first question, especially due 
to the simple character inherent to  this kind of structure. Linear filters also 
have a simple mathematical treatment and require a reasonably low computa- 
tional cost to implement. Nevertheless, linearity implies serious performance 
limitations, what is clearer when nonlinear channels are a t  the order of the 
day, but can also be pronounced in the classical linear scenario. 

Due to these features; there has been a growing interest in nonlinear 
equalizers. This tendency can be verified by a literature review on signal 
processing in the last two decades. The simultaneous advance in the field of 
computational intelligence is also responsible for the vast interest in nonlinear 
and adaptive filtering. Research on neural networks, fuzzy filters and others 
nonlinear structures experienced a major increase, bringing together several 
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scientific communities around a highly interdisciplinary set of models and 
tools. 

The success of these devices has several reasons, and one is of particular 
importance to nonlinear filtering: most of these tools are capable of a p  
proximating, with an arbitrary precision: any continuous nonlinear function 
defined on a compact set. That is, they are universal function approximators. 
As equalization can be viewed as an inverse mapping problem, nonlinear uni- 
versal approximators are strong candidates to be used as general models of 
equalizers. 

The second question is related to how to adjust the parameters of the 
filter. The usual answer is “through a well-designed equalization criterion”. 
Criteria are built to guide the choice of the parameters, since they are es- 
sentially mathematical statements of a chosen equalization objective. When 
a training signal is available (supervised training), the goal can be made as: 
“make the equalizer output as close as possible to the desired signal”. This 
is exactly the rationale behind the minimum mean square error (MMSE) 
criterion 

J A f A f S E  = E [ d k  - d )  - 2 ( k ) I 2  (1) 

where d is the equalization delay. 
However, if reference samples of a desired signal are not available a new 

criterion must be sought. Typical sources of information are the statistics 
of the transmitted signal, which are the core of all unsupervised technique. 
There are several examples of members of this class, ranging from the simple 
decision-directed criterion to the refined Shalvi-Weinstein framework (51. 

Unfortunately, these criteria were designed to adapt linear filters, and 
their applicability to  the general problem of equalization is still an open 
question. However, there is another unsupervised approach that can safely 
adapt a general filtering device in some relevant situations: the prediction 
paradigm [l]. 

Nonlinear  Predic t ion  and Equal izat ion 

A common task in signal processing is to predict future samples of an infor- 
mation signal from past ones. In the equalization context, a predictor is the 
key to a scheme of redundancy removal [l], which can be, as will be shown 
later; a valuable equalization approach. 

This idea of prediction can be translated to  mathematical notation as 
follou~s: 

where z p ( k )  is the predicted signal, ~ ( k -  1) is a set of past samples, and f,[.] 
corresponds to the mapping performed by the predictor. The prediction-error 
is defined as: 

Z P ( k )  = f, [ X ( k  - 1)1 (2) 

e p ( k )  = 4 k )  - z p ( k )  = z ( k )  - f, [ x ( k  - 111 (3) 
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The design of a predictor involves the minimization of the expected wlue 
of the square of the prediction error. This rule is intuitive and efficient. 
Within the equalization domain, assume, as a rule from now on, that a linear 
communication channel is being analyzed. Its input-ouput relation is given 

Ne 
by 

z(k) = C h ( i ) S ( k  - 2 )  (4) 
i=O 

where h(k)  is the channel impulse response, and N,+1 is its length. No noise 
is assumed to exist yet. 

To understand the link between prediction and equalization, it is neces- 
sary to consider (2) and (4). They reveal that zp(k) will be a function of 
z(k - l ) , z ( k  - 2) and so on. This implies that ,  given the channel model, 
it will also he a function of s(k - l ) ,  s(k - 2) and so forth. Nevertheless, 
Equation (3) reveals that the prediction-error depends on z ( k )  as well. From 
(4), it is clear that z(k) is determined by s (k )  as well a process that cannot 
be part of fP[x(k - l ) ] .  This implies that in many cases of interest there will 
always be a residual prediction error. In the ideal case, it will be simply a 
scaled version of s ( k ) .  

This means that the objective of a prediction-error filter and a MMSE 
filter with zero equalization delay will be, to some extent, equivalent. In other 
words; a good predictor may produce, in an unsupervised way, an estimate 
of the transmitted signal s ( k ) .  

Such conclusion is well known from the linear prediction theory, with 
the immediate restriction to the minimum-phase channels. However, Caval- 
cante et al. [l] showed that one could overcome this limitation by using a 
nonlinear predictor. This kind of structure can fairly approximate an ideal 
prediction-error filter, thus providing a solid basis for unsupervised nonlinear 
equalization of linear channels. One should not underestimate the relevance 
of this result, given the major differences between linear and nonlinear filters 
when an unsupervised equalization problem is faced. 

The solidity of the prediction approach is the main reason behind its 
choice to compose our paradigm of unsupervised nonlinear equalization, which 
we shall discuss in section 3. 

Bayesian Equalization 

When the channel is modeled as a FIR filter and the transmitted signal 
belongs to a finite alphabet, the received samples will also belong, in the 
absence of noise, to a finite set. As can be deduced from (4); each possible 
value of a general input vector x ( k )  = [ z(k) z(k - 1) . . . z ( k  - rn + I) I T ,  
where rn - 1 is the order of the equalizer, is associated with a sequence 
s ( k ) ,  s (k  - l), ”. , s (k  - N c  - rn + 1). This means that, given a pre- 
determined equalization delay d, there will he a “s(k  - d)” label associated 
with each possible value of x ( k ) .  The task of an equalizer, in this context, 
will be to separate the classes of input vectors that  correspond to each symbol 

872 



of the transmitted signal alphabet. 
Assume that the transmitted signal belongs to a binary (fl) alphabet 

and has independent and identically distributed samples, that the channel 
obeys the general model of (4), and that the noise n(k)  is a non-zero additive 
white Gaussian noise (AWGN). To obtain the optimal decision boundary, the 
usual procedure is to seek the minimum probability of error, in accordance 
with Bayes' theory. From this criterion the following optimal solution can be 
obtained [4]: 

where xj and xi are the classes of states associated with the +1 and -1 
symbols respectively, and Xi and X- are the sets containing all these input 
vectors. The variance of the zero-mean Gaussian noise is ut.  

An equalizer with a decision function equals to  the one presented in (5) 
is called a Bayesian equalizer, i.e., one optimal in the minimum probability 
of error sense. It is important to note that the decision function is usually 
nonlinear. This implies, as outlined before, that the optimal equalization 
device in a linear scenario is commonly a nonlinear filter, reinforcing the 
general interest in this class of structures. 

The Bayesian paradigm permeates the theoretical assumptions behind our 
proposal, which we analyze in the next section. 

THE FUZZY PREDICTION-ERROR EQUALIZER (FPEE) 

Fuzzy filters are nonlinear devices that process information by means of a spe- 
cific set of fuzzy "IF-THEN" rules, which may be adapted in real time. Such 
structures have been studied and applied with success to several engineering 
problems. 

In the context of digital signal processing. fuzzy filters are of particular 
interest because, as shown by Patra [4], they can play the role of a Bayesian 
equalizer, what implies the possibility of achieving optimal performance. This 
important feature, together with the prediction potential of fuzzy filters led 
us to choose this structure as the basis of our paradigm 

Our aim, as discussed before, is to  design a fuzzy predictor capable of 
providing good estimates of the output of a channel modeled as in (4), with 
AWGN. Its role is to produce an estimate of z(k) from the channel output 
samples z(k - l), z(k - 2), . . . , z(k - m + 1). which correspond to vector 

In order to implement a fuzzy predictor, the first step is to  define the fuzzy 
sets of the input space. Let us define fit = ZNc+' fuzzy sets for each input 
z(k - z),  0 5 z I m - 1, where A t  is the number of noise-free scalar channel 
output states C,, 1 5 J 5 A t .  Inspired by the fuzzy implementation of the 
optimal Bayesian equalizer [4], these fuzzy sets are represented by Gaussian 

x ( k  - 1). 
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membership functions with centers C, and spread values un, 

, 1 5 j 5 A l  and 0 5 i 5 m-1 (6) 1 (z(k  - 2 )  - C,)2 $ j  [z(k - i)] = exp 

The rule base of the fuzzy predictor is formed by rules of the following 
type: 

R(J1J2, .  ,Jm):If z(k-1) is $iz a n d . .  .and z(k-m+l) is $c, then z ( k )  is $;' 

where 1 5 j i  5 A l .  It is not necessary to use all the possible combinations 
of i and j to construct the rule base of the predictor. Only those combi- 
nations associated with the noise-free channel output states are of interest. 
Consequently, the number of rules is equal to the number of noiscfree chan- 
nel output states, N,  = ZN~+" ' .  Considering product inference and center of 
gravity defuzzification, the fuzzy predictor output is, 

where wl is the center of the membership function related to  the THEN part 
of the rule 1 and @l5 [z(k - i)] , 1 5 i 5 m - 1, denote the ith membership 
function associated to the same rule. 

We can note that half of the rules are conflicting rules, i.e., rules that 
have the same IF part but a different THEN part. This occurs because the 
input vector of the predictor represents only ZN~+"-' noise-free states. For 
each ~ ( k  - 1) state, there are two possible values for the noise-free value 
of z (k ) ,  each one associated with a possible transmitted symbol, +1 or -1. 
Therefore, half the rules can be suppressed without loss of performance if 
the weights w~ are properly adjusted. It is possible to show that the values 
of the weights that minimize the prediction-error are the mean between the 
centers of the membership function of the THEN part of the conflicting rules. 
Consequently, the output of the FPEE, i.e., the  prediction-error, is, 

The prediction-error e,(k) is then passed through a slicer in order to 
recover the transmitted symbol s(k ) .  A block diagram that summarizes the 
proposed FPEE is shown in Figure 2. 

874 



Figure 2: Fuzzy Prediction-Error Equalizer block diagram 

FPEE Adaptation Procedure 

To implement the FPEE; it is necessary to  estimate the N, noise-free chan- 
nel states, the noise variance U?, and the weights wi. The first step is the 
estimation of the scalar channel states Cj and the noise variance. This is 
made by using an  unsupervised clustering technique, the Enhanced k-means 
Algorithm 131. The symmetry of the values of the channel states is used to 
speed up the convergence of the clustering algorithm [4], because, due to  this 
feature, only half of t.he states need to be estimated. The initial values of 
the centers are uniformly distributed in the interval [-1, +1], and the initial 
variances are all set to  a small value. The k-means algorithm requires knowl- 
edge of the number of scalar channel states, which can be obtained from an 
autocorrelation-based estimation of the channel order (21. 

The second step is t.he generation of the rule base using the algorithm 
proposed in 171. Given the equalizer input vector x ( k )  = [ z ( k )  z(k - 
1) . . . z(k-rn+l) lT,  for each membership function $J: [z(k - i ) ]  we calculate 
the membership value for all vector components. The rule i s  obtained by 
assigning to each value of the input vector the fuzzy set corresponding to 
the membership function that achieved the maximum degree of membership. 
This procedure is repeated for all channel output samples in the set used in 
the estimation of the scalar channel output states. The rule base obtained 
contains conflicting rules; as discussed previously. Each pair of conflicting 
rules is substituted by a single rule with the same IF part and the center of 
the membership function of the THEN part is set to  the mean value between 
the centers of conflicting THEN parts. These centers are the ,values of the 
weights WI. 

The estimation of the channel states and the noise statistics can be im- 
perfect. In order to refine them, the last step is to  employ a classical weight 
update procedure based on the well-established RLS algorithm [6]. 

PERFORMANCE EVALUATION AND DISCUSSION 

This section investigates the performance of the proposed FPEE in terms of 
BER for a minimum and a non-minimum phase channel. The experiments 
were performed until either 3000 errors were observed or lo6 symbols were 
transmitted. 

The first channel used in the simulations was h l ( r )  = 0.8354+0.5012~-'+ 
0.2256r-'. This is a minimum phase channel with 2 zeros situated at tl = 
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-0.9 and z2 = 0.3. The scalar noise free channel states are located at 
+1.5608,il.1096,i0.5584 and 5 0.1072. Figure 3 shows the BER perfor- 
mance for the FPEE with estimated channel states, the FPEE with exact 
channel states, the linear prediction-error equalizer (LPEE) and the Bayesian 
equalizer. For all equalizers, the number of inputs m was set to 3. The Val- 
ues for the coefficients of the LPEE were set to the MMSE solution and were 
fixed over the experiments. The Bayesian equalizer equalization delay was 
set to d = 0. The BER curve for the trained version of the FPEE was ob- 
tained in the following way: the channel scalar states and the noise statistics 
were evaluated using the unsupervised k-means clustering algorithm with 500 
samples. This same set of samples was used to generate the rule base of the 
fuzzy predictor. After the equalizer was constructed, the predictor weights 
were trained using the RLS algorithm with 500 samples. This procedure was 
repeated for each signal to noise ratio (SNR) value. The resulting BER curve 
represents the average of 30 experiments. 

I 
YI m 

5 15 25 30 
SNR 

Figure 3: BER performance for FPEE with estimated channel states, FPEE with 
exact channel states, LPEE and Bayesian equalizer for channel hi(z), m = 3 and 
d = O .  

From the equalizer BER curves in Figure 3, it can be seen that the per- 
formance of the FPEE with exact channel states is close to the Bayesian 
equalizer. The trained version of FPEE suffers from performance degrada- 
tion, mainly for low SNR values. This is because, as observed during the 
simulations, the estimation of the scalar channel states by the clustering al- 
gorithm and the construction of the rule base are corrupted by noise, leading 
to incorrect values of scalar states and rules. Nevertheless, for high values of 
SNR, the performance of the trained version tends to converge to that of the 
FPEE with exact channel states. All the equalizers outperform the LPEE. 

The channel used in the next experiment was h ~ ( z )  = 0.5632-0.7322~-'- 
0 . 3 8 3 0 ~ - ~ .  This is a non-minimum phase channel with 2 zeros located at 21 = 
1.7 and z2 = -0.4. The scalar states are situated at  f1.6784, +0.9124,10.552 
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and i0.214. The procedure to  generate the BER curves was the same of the 
previous channel. 

From the simulation results depicted in Figure 4: it can he observed that 
for this channel the performance of the FPEE with m = 3 is not so close to  
Bayesian equalizer of the same order and d = 0 as it was for the previous 
channel. This may be because the predictor, which represents the nonlinear 
part of the FPEE. uses m - 1 inputs, while the Bayesian equalizer uses m. 
This difference makes the FPEE less flexible than the Bayesian equalizer 
of the same order. For non-minimum phase channels, which needs highly 
nonlinear equalizer decision boundaries for equalization delay d = 0, the 
performance degradation due to this difference is emphasized. This problem 
can be minimized increasing the FPEE order, as can be observed from Figure 
4. The FPEE with exact noise free channel states and m = 4 performance 
is very close to Bayesian equalizer with m = 3 .  The behavior of the trained 
version of the FPEE with m = 3 is analog to that of the previous channel. 

10 c 

!> 'r. . . .  . 
tb9 

0 5 10 15 20 25 
SNR 

Figure 4 BER performance for FPEE with estimated channel states, FPEE with 
exact channel states, LPEE and Bayesian equalizer for channel hz(z)  and d = 0. 

Further experiments demonstrated that the trained version of the FPEE 
experiences severe degradation when there are scalar channel states very close 
to each other. We consider that clustering and rule generation difficulties are 
the main reasons for this outcome. 

CONCLUSION 

This work introduced a new paradigm for unsupervised nonlinear equaliza- 
tion based on a fuzzy structure and a prediction criterion. The proposal 
was presented in connection with its theoretical basis and with its motiva- 
tions, considered by us very relevant, given the incipience of the field of blind 
nonlinear equalization. 

877 



We chose two representative channel models to assess the performance 
of the proposed paradigm. In the minimum-phase scenario, the ideal FPEE 
fairly emulated the Bayesian equalizer, though the adapted FPEE was some- 
what inferior? due to clustering and rule generation problems. The non- 
minimum phase scenario was harder, as one would expect given the higher 
nonlinear character inherent to the problem of zero-delay equalization in this 
case. Even in this case though, the nonlinear predictor performed quite well 
despite the same learning problems experienced in the previous case. 

We must not forget that a nonlinear prediction-error equalizer with m 
inputs operates effectively only on m - 1 samples, because of the structure 
inherent to a prediction-ei-ror filter. The addition of another input led to a 
performance almost equal to that of a Bayesian equalizer. 

From these results, it is possible to conclude that the combination of a 
fuzzy structure, well-established learning procedures, and a prediction cri- 
terion form a solid basis for unsupervised nonlinear equalization. Our next 
goals are to refine both the clustering method and the rule generation pro- 
cedure, and to consider in more detail other approaches to  the unsupervised 
nonlinear problem. 
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