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ABSTRACT 

 

Due to its universal approximation capability, the 

multilayer perceptron (MLP) neural network has been 

applied to several function approximation and 

classification tasks. Despite its success in solving these 

problems, its training, when performed by a gradient-

based method, is sometimes hindered by the existence of 

unsatisfactory solutions (local minima). In order to 

overcome this difficulty, this paper proposes a novel 

approach to the training of a MLP based on a simple 

artificial immune network model. The application domain 

for assessing the performance of the proposed technique is 

that of digital communications, in particular, the problems 

of channel equalization and pre-distortion. The obtained 

simulation results demonstrate that the proposal is capable 

of efficiently solving the problems tackled. 

 

1. INTRODUCTION 

 

A most relevant issue in digital communication 

systems is to find countermeasures to the impairments 

introduced by the channel and the devices that are 

essential to their proper operation. The idea of using a 

filter to reconstruct the original message from its corrupted 

version results in two possibilities: equalization and pre-

distortion. The former approach is based on the design of 

a reception filter that mitigates the harmful effects of the 

medium, whereas the latter introduces a beneficial and 

controlled distortion in the signal before its transmission. 

When the channel is nonlinear, or even if it engenders 

a complex linear problem, it becomes imperative that 

nonlinear filters be part of the solutions to both of the 

aforementioned problems. One of the most popular and 

traditional members of this class of structures is the MLP, 

a feedforward neural network with demonstrated universal 

approximation capability. 

Notwithstanding these desirable features, the 

nonlinear character of the MLP renders the adaptation of 

its parameters via classical gradient-based techniques 

rather complicated due to the multimodal character of the 

resulting MSE cost function. Another relevant issue is that 

the adaptation of any pre-distorter according to the 

classical framework requires channel estimation 

(identification), which is a rather undesirable demand in 

some practical cases. 

Several non gradient-based methods to train MLP 

networks have already been proposed in the literature (e.g. 

[1-3]). Among these approaches, evolutionary techniques 

play a major role because they perform a broad 

exploration of the search-space, thus being able to 

determine quasi-optimal weight sets (and other 

parameters, such as network architecture). In the present 

paper, we propose a new evolutionary technique to train 

MLP equalizers and pre-distorters, the basis of which is 

the artificial immune network model introduced in [4]. 

This proposal has several advantages over the standard 

back-propagation algorithm: it does not require the 

calculus of the derivative of the objective function; it 

provides a good balance between exploration and 

exploitation of the search-space; and it eliminates the need 

for channel identification in pre-distortion. The proposal 

will be applied to a nonlinear equalization problem and, as 

an original paradigm, to a pre-distortion problem. 

2. MLP-BASED EQUALIZATION AND PRE-

DISTORTION 

        The main objective of a communication system is to 

assure a proper message interchange between a transmitter 

and a receiver, both of which are interconnected by a 

channel, as shown in Figure 1. 

CHANNEL
r(n)s(n)

 

Figure 1: Simplified Model of a Communication System. 

The existence of a medium whereby information is 

sent implies that the message s(n) will be received as a 

distorted version r(n). Any attempt to reconstruct the 
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original information directly from this corrupted signal 

would probably lead to unacceptable bit error rates 

(BERs).  

A direct approach to mitigate these noxious effects is 

to build a device that is, in general terms, the channel 

inverse. From this primary notion, two immediate 

strategies arise: 1) to place a filter at the receiver, i.e., to 

process r(n) in order to obtain a sequence as close as 

possible to the transmitted message; or 2) to produce a 

controlled distortion that, when combined with the effects 

of the channel, give rise to a received signal that be 

equivalent to the original information. The first strategy is 

called equalization, while the second one is referred to as 

pre-distortion. Let us discuss both in more detail. 

2.1 – Equalization 

Due to its straightforwardness, the idea of 

equalization is as old as the modern communication 

theory. Its rationale is indeed very simple: to filter the 

distorted signal using a device that produces a mapping 

inverse to that originated by the channel. Figure 2 

illustrates this process. 

CHANNEL
r(n)s(n)

EQUALIZER
y(n)

RECEIVER

 

Figure 2: Equalization Scheme. 

In the context of linear systems, the consequences 

thereof are immediate: channel and equalizer will have 

“opposite” spectral features. However, devices of this kind 

may be insufficient if the channel is nonlinear, or even if 

the linear problem is particularly complex (e.g. due to a 

bad choice of the equalization delay). In such cases, 

nonlinear structures like neural networks and fuzzy filters 

become attractive alternative approaches. 

After selecting the adequate structure of the neural (or 

fuzzy) equalizer, it will be necessary to determine its 

parameters in a suitable way. If the channel is known a 

priori, this problem becomes relatively simple. However, 

when the channel is unknown, it is necessary to devise a 

cost function that guides the adaptation process. If there is 

a reference signal, a straightforward solution is to employ 

a mean-square error (MSE) cost function: 

JEQ = E[(s(n-d) – y(n))
2
]

  
                           (1) 

where d is the equalization delay and E(⋅) the expectation 

operator.  

The MSE is, as attested by countless instances 

reported in the literature, a very solid basis for the 

adaptation process. Nevertheless, the use of filters derived 

from the field of computational intelligence opened a new 

perspective: to analyze the problem of equalizing a 

channel as if it were a classification task, thereby taking 

advantage of the fact that, in digital systems, the 

transmitted samples always belong to a finite alphabet. 

However, this new perspective requires a formulation 

distinct from that we have just presented: instead of 

inverting the channel, we must conceive the equalizer as a 

device capable of minimizing the decision error. Using the 

MAP (Maximum a Posteriori) criterion and assuming the 

existence of AWGN (Additive White Gaussian Noise), it 

is possible to obtain the input-output relation of the 

optimal solution, viz, the Bayesian equalizer [5]. 

The Bayesian filter is the sample-by-sample equalizer 

par excellence, the benchmark against which every 

candidate equalizer should be measured. Two structures 

are privileged by their capacity of emulating the optimal 

device: the RBF (Radial Basis Function) neural network 

and a fuzzy filter with Gaussian membership functions  

[5]. 

The main drawback associated with this approach is 

that the number of noiseless channel states, which 

corresponds, for instance, to the number of neurons in the 

hidden layer of the RBF network, grows exponentially 

with the orders of both the channel and equalizer. This 

drawback attracted our interest towards another kind of 

neural network: the multilayer perceptron (MLP) [6], 

which will be discussed in more detail later. 

2.2 – Pre-Distortion 

         The problem of pre-distortion can be understood as 

that of building a device that, by modifying the transmitted 

message in a controlled way, counterbalances the 

pernicious effects of the channel, as shown in Figure 3. 

PRE-DISTORTER
y(n)s(n)

CHANNEL
r(n)

 

Figure 3: Simplified pre-distortion scheme. 

The main advantage of this approach is that, in a 

broadcast system, it would be necessary to introduce a 

single device in the transmitter – the pre-distorter – instead 

of one equalizer per receiver. On the other hand, there is a 

relevant limitation: in such case it would be impossible for 

the pre-distorter to mitigate effects produced externally to 

the transmitter. 

Pre-distorters (PD) are traditionally used in satellite 

communications to compensate for the nonlinear effects of 

amplifiers that, in order to increase their power efficiency, 

work near saturation [7]. The standard design of a PD 

follows two stages: 1) identification of the amplifier 

model; and 2) creation of a model inverse to that obtained 

in the first stage. 

This twofold training procedure has, in our opinion, 

two major weaknesses: it requires, at least partially, a 
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priori knowledge of the features of the amplifier, and it 

renders essential the apparatus inherent to an identification 

problem. Therefore, it would be desirable to obtain the 

parameters of the optimal PD directly from, for instance, 

an error signal. A straightforward possibility is to use the 

traditional MSE cost function: 

        JPD = E[(s(n) – r(n))
2
]                                             (2) 

Notwithstanding its inherent solidity, this supervised 

approach requires, in the context of pre-distortion, that a 

major difficulty be overcome: the derivatives of the cost 

function will, due to the relative positions in the scheme 

shown in Figure 3, depend on the channel model. 

Apparently, the project becomes a sort of Sisyphean task: 

the demand for system identification has arisen once more.     

If our repertoire of optimization techniques were 

restricted to methods based on cost function 

differentiation, this would be a major difficulty in solving 

the pre-distortion problem. Nevertheless, there are search 

procedures that do not require this sort of mathematical 

manipulation. The so-called evolutionary algorithms, 

whose modus operandi depends solely on the definition of 

a fitness function, are examples of this kind of technique. 

In this work, we will focus our attention on an 

evolutionary technique that belongs to the field of artificial 

immune systems: the opt-aiNet [4]. The opt-aiNet is a 

valuable tool for solving a wide range of optimization 

problems for two main reasons: 1) it presents a good 

balance between exploration and exploitation of the 

search-space; and 2) differently from other evolutionary 

proposals, it contains a mechanism devised to regulate 

population size and to maintain the diversity. Furthermore, 

this tool proved itself to be capable of successfully 

adapting a number of filtering structures in similar 

contexts [9], [10]. The opt-aiNet will be discussed in detail 

in section 3. 

The synergy between the MSE cost function and the 

opt-aiNet is the key to the establishment of a new pre-

distortion paradigm. Although the proposal be 

independent of the choice of any particular pre-distorter, it 

will be assessed in this work using an MLP neural 

network, in accordance with previous efforts reported in 

the literature [7] and the discussion presented in Section 

2.1. 

 

3. THE PROPOSED HYBRID SYSTEM: MLP 

TRAINED VIA OPT-AINET 

 

3.1 – The Multilayer Perceptron 

The MLP is one of the most popular neural network 

architectures for feedforward processing [6]. Its 

fundamental building block is the well-established 

artificial neuron model composed of a linear combiner and 

a sigmoidal memoryless nonlinearity that works as 

activation function. The layered interconnection of a set of 

these units gives rise to a structure with multiple layers, 

the number of which is a design variable. As described in 

[6], an MLP with a single hidden layer and a linear output 

neuron has the ability of universal approximation, thus 

being complex enough for our purposes. The input-output 

relation of this single layer neural network can be written 

as:  

( ) knny
T ++= bAxc )()( ϕ ,                                      (3) 

where A is the weight matrix of the hidden layer, b is the 

bias vector of the hidden layer, c is the weight vector of 

the output layer, ϕ(⋅) is the sigmoidal activation function 

of the hidden layer, and k is the bias term of the output 

neuron. 

Given the strong nonlinear character of this kind of 

filter, the resulting MSE cost function may contain 

multiple minima. This means that there will be a 

significant chance of convergence to a poor local optimum 

if a gradient-based technique, such as the back-

propagation algorithm, is used to train the MLP network. 

3.2 – The opt-aiNet Algorithm for Training MLP 

Networks 

The acronym opt-aiNet stands for “Optimization 

version of an Artificial Immune Network” [4]. It is a 

particular type of artificial immune system (AIS) 

developed to solve optimization problems. AIS constitute 

a brand new computational intelligence approach that 

takes ideas from the immune system in order to develop 

new tools for solving multi-modal problems [4],[8]. 

Several theories, principles and models of the vertebrate 

immune system give rise to highly abstract models 

(algorithms) that can be applied to many domains, from 

biology to computing.  

The opt-aiNet algorithm borrows ideas from two main 

theories about how the immune system operates, namely, 

clonal selection and affinity maturation and the immune 

network theory. In brief, clonal selection and affinity 

maturation state that the immune system is composed of 

sets of cells and molecules that carry receptors for antigens 

(disease-causing agents). When some of these receptors 

recognize an antigen, they are stimulated to proliferate and 

differentiate into either memory cells or effector cells. 

During proliferation, most cells suffer a controlled 

mutation process that followed by a natural selection 

mechanism allow the most adapted offspring cells to 

survive in detriment of the least adapted ones. This whole 

process has some peculiar features: cellular reproduction 

is asexual; the number of offspring a given cell may have 

is a direct function of its affinity (degree of recognition) 

with the antigen; the mutation suffered during 
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reproduction is inversely proportional to affinity (well-

adapted individuals tend to be less disturbed). 

In contrast to the clonal selection theory, to which the 

idea of cells acting in isolation is subjacent, the immune 

network theory describes the immune system as being 

composed of cells and molecules that interact with each 

other in a network-like form. These self-interaction 

patterns suggest a dynamic immune system with eigen-

behaviors even in the absence of foreign stimulation 

(antigens). An antigen would thus be responsible for 

disturbing a self-organizing and self-sustainable system.  

The opt-aiNet algorithm, which was developed from 

these two theories, clonal selection and immune network, 

can be summarized as follows (further details are provided 

in the sequence). 

1. Initialization: randomly create an 
initial population of network cells; 

2. Local search: while stopping 
criterion (see below) is not met, do: 

2.1  Clonal expansion: for each network 
cell, determine its fitness (an 
objective function to be optimized) 
and normalize the fitness vector. 
Generate a set of Nc antibodies, named 
clone, which are the exact copies of 
their parent cell; 
2.2  Affinity maturation: mutate each 
clone with a rate that is inversely 
proportional to the fitness of its 
parent antibody, which itself is kept 
unmutated. The mutation follows Eq. 
(4) below. For each mutated clone, 
select the one with highest fitness 
and calculate the average fitness of 
the selected cells; 
2.3  Local convergence: if the average 
fitness of the population does not 
vary significantly from one iteration 
to the other, go to the next step; 
else, return to Step 2; 

3. Network interactions: determine the 
affinity (similarity) between each 
pair of network antibodies (see 
below); 

4. Network suppression: eliminate all 
network cells whose affinity with 
each other is greater than a pre-
specified threshold (σs), and 
determine the number of remaining 
cells in the network; these are named 
memory cells; 

5. Diversity: introduce a number of new 
randomly generated cells into the 
network and return to Step 2. 

 

 When the opt-aiNet algorithm described above is 

used to train an MLP, each cell corresponds to an 

individual of the population and is represented as a real-

valued vector in a Euclidean space. This vector contains 

all the weights of the MLP network to be adapted; for 

example, if the MLP network has one input, two hidden 

units and one output, then there are seven connections 

(weights) to be updated, all of which are concatenated into 

a single vector.  

The fitness of a given cell corresponds to the value of 

the objective function (Eqs. (7) and (9)) at the point 

characterized by its parameter vector. The affinity between 

two cells corresponds to their Euclidean distance. Clones 

are offspring cells that are the progenies of a single cell; 

they are originally identical to the parent cell, but, after 

mutation, they become slight variations of their parent cell. 

The fitness-proportional mutation of Step 2.2 is performed 

according to the following expressions: 

 

( )
( ) ( )*exp1

,1,0'

f

Ncc

−=

+=

βα

α
                                                  (4) 

 

where c' is a mutated cell c, N(0,1) is a Gaussian random 

variable of zero mean and standard deviation σ = 1, β is a 

parameter that controls the decay of the inverse 

exponential function, and f* is the fitness of an individual 

normalized in the interval [0,1]. A mutation is accepted 

only if the mutated antibody c' is within the domain range. 

Finally, the standard stopping criterion is based on the 

cardinality of the memory population.  

 

4. RESULTS 

 

In order to evaluate the performance of the opt-aiNet 

algorithm in the MLP-based equalization context, consider 

the following nonlinear channel model: 

)()(3.0)()( 2 nnxnxnr ν++= ,                               (5) 

where r(n) is the received signal, ν(n) is a zero mean 

additive white Gaussian noise and x(n) represents the 

channel ISI (inter-symbol interference), which is given by: 

)1(8320.0)(5547.0)( −+= nsnsnx                   (6) 

The transmitted signal s(n) is considered to be an 

independent and identically distributed (i.i.d.) sequence of 

symbols belonging to a binary {±1} alphabet. Since the 

opt-aiNet algorithm is an optimization tool that searches 

for multiple maxima of a given function, it is necessary to 

define a new cost function, JFIT_EQ, whose maxima are the 

minima of JEQ: 

EQ

EQFIT
J

J
+

=
1

1
_                                                 (7) 

The simulations will investigate the effectiveness of 

the proposed paradigm in terms of the estimated BER for 

several signal-to-noise ratio (SNR) values. We shall 
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compare our proposal to an MLP trained by the classical 

back-propagation algorithm [6] and to the optimal 

Bayesian solution. The parameters in the simulations, 

including those related to MLP structure and training, 

were defined after several trials. In the simulations related 

with the equalization problem, we used an MLP equalizer 

with 6 neurons in the single hidden layer and 2 inputs, r(n) 

and r(n-1). The equalization delay was fixed at d = 0, 

since this is the worst-case scenario. The opt-aiNet 

parameters were set to the values shown in the column 

“Equalization” of Table 1 and, for each SNR value, the 

MLP equalizer was trained by the opt-aiNet algorithm 

using 3,000 transmitted symbols. The cost function (7) 

was estimated through time-averaging, using a window of 

150 past samples of s(n) and r(n). The back-propagation 

algorithm used in the simulations is a standard 

implementation with learning rate 0.04 and momentum 

constant 0.1. In this case, the MLP equalizer was trained 

using 20,000 transmitted symbols for each SNR value. 

After the training procedures, the MLP parameters were 

fixed and the BER was measured by means of continuous 

symbol transmission until either 3,000 errors were 

observed or a maximum of 10
7
 symbols were sent. 

The simulation results, including the Bayesian 

equalizer curve, are shown in Figure 4. The curve of the 

opt-aiNet training represents an average of 10 

experiments, while the back-propagation results are 

presented in two curves: one for the best achieved 

performance and another for the average of 50 

experiments. The number of experiments was such that a 

reliable estimate of the mean curve could be computed. 

The average performance of the MLP equalizer trained via 

opt-aiNet algorithm is nearly the same as that of the 

Bayesian equalizer, which demonstrates the robustness 

and the solidity of the proposed paradigm. A similar 

behavior is observed in the curve of the best back-

propagation result, but, nevertheless, due to the existence 

of local optima, there are experiments in which the back-

propagation algorithm has a poor performance, which 

explains the high BER values present in the average curve. 

On the other hand, the computational complexity of the 

opt-aiNet algorithm is higher than that of the back-

propagation. In order to improve the average results in 

training based on iterative nonlinear optimization, it is 

possible to use more elaborate initialization strategies [11] 

and also second-order optimization methods [12]. 

However, the problem related to the convergence to 

possibly poor local optima will persist. 

Now, consider the problem of designing a pre-

distorter to compensate for the nonlinear distortions of a 

power amplifier, whose AM-AM and AM-PM responses 

are given respectively by [7]: 

( ) ( ) ,
)(1

)(
)(,

)(1

)(
)(

22
ns

ns
ns

ns

ns
nsA

A

A

Φ

Φ

+
=Φ

+
=

β

α

β

α
      (8) 

where αA, βA, αΦ and βΦ are model constants. For this 

simulation, the values of the amplifier parameters are set 

to αA = 11.534, βA = 1.6242, αΦ = 11.431 and 

βΦ = 39.071. The transmitted signal s(n) is considered to 

be an i.i.d. sequence belonging to a 16 QAM alphabet. 

Both the transmitted symbols constellation and the power 

amplifier output without pre-distortion are shown in Figure 

5. In the experiments, we used a complex-valued MLP 

with a single input and 5 neurons in the single hidden layer 

as pre-distorter. The perceptron was trained by the opt-

aiNet algorithm to maximize the following cost function: 

PD

PDFIT
J

J
+

=
1

1
_                                                 (9) 

The cost function (9), which represents the fitness of each 

individual in the population of the opt-aiNet algorithm, 

was evaluated using all the 16 possible s(n) values and the 

respective amplifier output r(n). A JFIT_PD value of 0.99 

was set as the stopping criterion to the algorithm. The opt-

aiNet parameters were set to the values shown in the 

column “Pre-Distortion” of Table 1. Figure 6 shows a 

typical amplifier output with pre-distortion together with 

the 16 QAM constellation. As we can see, the pre-distorter 

performs its task very well, removing almost all the 

distortions and recovering the original 16 QAM 

constellation. 

5. CONCLUSIONS 

 

This work introduced a new paradigm for neural 

network training based on an immune-evolutionary 

technique called opt-aiNet. In order to verify the 

performance of the proposed paradigm, we chose two 

representative problems in digital communications: 

channel equalization and pre-distortion. 

The average performance of the proposal in the 

context of equalization of a nonlinear channel was very 

close to the optimal solution. This attests the robustness of 

the immune-evolutionary approach, as well as its 

remarkable capability of avoiding local convergence, 

Table 1: Opt-aiNet parameters.  

Opt-aiNet Parameter Equalization Pre-Distortion 

Initial Population Size 5 20 

σs 5 3 

Number of offspring per 

cell 
5 25 

β 30 80 
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which is a major drawback of gradient-based training 

techniques. 

The proposed training scheme also gave rise to a new 

pre-distortion strategy that does not require knowledge of 

the amplifier model. The results confirm both the viability 

and the effectiveness of the proposal.  
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Figure 4: BER curves for the MLP equalizers and for the 

Bayesian equalizer. 

 

Figure 5: 16 QAM constellation (+) and amplifier 

output without PD (o) 

 

 

Figure 6: 16 QAM constellation (+) and amplifier output 

with PD (o). 
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