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Abstract

Recent approaches to EEG signal analysis
have increasingly employed joint multivariate
autoregressive (MAR) models to describe rela-
tions between signals collected from different
electrodes. Among descriptors of pairwise re-
lations, partial coherences stand out as they
exclude the common influences of other si-
multanouesly observed signals and thereby de-
compose the analysis into sets of direct mutual
influences between signal pairs. Here we de-
scribe an efficient method to reduce the com-
plexity of partial coherence computation when
MAR models are available.
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1 Introduction

Recent applications of spectral estimation to
the problem of signal pathway analysis in the
brain [1, 2, 3, 4] have renewed interest in the

computation of partial coherences [5] between
pairs of time series when many simultane-
ously time series are recorded and analyzed
simultaneously. This interest is justified by
the distinctive role this quantity plays in iso-
lating the exclusive mutual relations between
two time series through suppressing those ef-
fects that can be attributed to other simul-
taneously measured signals [5] . Even though
most published algorithms for its computation
rely on estimates of the joint-spectral den-
sity matrix S(f), we show here that whenever
Multivariate Auto Regressive (MAR) models
are available significant computational savings
can be achieved that altogether dispense with
the prior computation of S(f). This matter as-
sumes added relevance in view of the growing
popularity of MAR models specially in EEG
analysis [1, 6].

2 Background

Given a set of time series xy(t) ,i = 1... N,
the partial coherence ~7(f) between the pair
of time series x;(t) and z,(t) measures the ad-
equacy, in terms of mean squared error predic-



tion power, of a linear model T;( f) connecting
z;(t) and x;(t) when the influence of all other
time series zx(t) k # i,j are subtracted from
z;(t) and z;(t). By definition [5],

Sa:ﬂ:j
(f) = m (1)
where Sz, (f), and Sz,z, (f) stand for the auto-

and cross-power spectral densities of Z,,(t) =
(1) = Blea(Olre (), # 1,3}, m = i, j which
result from discounting the optimal linear
least squares (Wiener) joint prediction using
the other series. This leads naturally to the
computation of

Stz (f) = Sz, (f) — ng(f)s;i (f)8xz; (f)
(2)
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and Sxx(f) is the cross-power spectral density
of the reduced joint process describing (%)
k #,7 [5]. Thus all the information for com-
putation can be obtained by adequate choice
of submatrices in the joint power spectral den-
sity matrix S(f). Thus each of the N(N+1)/2
auto- and cross-spectra Sz,z,(f) requires in-
verting an N — 1 X N — 1 matrix leading to
O(N?) multiplications to obtain all the needed
quantities.

An ever more popular means to estimate
S(f) involves the use of linear prediction, spe-
cially through Multichannel Auto-Regressive
models

z1(t) p zi(t—1)
: = ) A : (3)
zn(t) r=1 zn(t—7)
e1(t)
+ (4)
en(t)

where the resulting joint spectral density esti-
mate is given by the factors

S(f) =H(f)ZH(f)" ()

with 3 standing for the prediction error co-

variance B
matrix and H(f) AN (=1 - A(f))_1 )

where A(f) = ZAZZ :

—e—J2nf
We show here that Whénéver a fitted model

in Eq. (3) is available, a simpler and more
convenient means of computing Eq. (1) is pos-
sible without prior need to estimate Eq. (5)
for use in Eq. (2).

3 The Computationally
Improved Method

In the general case, proved in the Appendix,
we have:

Method For each frequency f, consider the
partition of

= [a(f) a(f) ... an(f)]

into columns. Then the partial coherence
between z;(t) and z;(t) at each such fre-
quency is given by:

(a:(f). & (N)I’
(@(f),a(f)@(f)a(f)

where (a;(f),a;(f)) = a/'(f)Z 'a;(f)
and X is the prediction error covariance
matrix.

v (f) =

Remark 1 A simple interpretation of Eq.
(6) is that it measures the square of the co-
sine of the angle between the column vectors
a,(f) and a;(f) with £ for metric.

Remark 2
For each frequency, one may compute all pair-
wise coherences as squares of the upper diago-

nal elements of APS™1A =S ' (f) followed



by a suitable normalization of its rows and
columns by the main diagonal of S~Y(f). This
observation is consistent with the expression
for v (f) used by [7] as ratios of certain mi-
nors of S(f).which also leads to O(N®) multi-

plications.

Remark 3 The complezity of AYS~1A s
N3 (inversion of X) +2N?(2 matriz multipli-
cations), where only the latter term need be
accounted for each new desired frequency.

To illustrate the meaning of the present
method we consider the case where N = 3 and
3} is the identity matrix. Then, in evaluating
74, (f) we may rewrite Eq. (2) as:

leazj (f) stxj (f)
At ) Gon(D) Senalf
for i, 5 # 3.

We may compute

Seia; () = EIXi (/)" X;(f)] (8)

with help of a wvector representation of
Xip(f) in terms of a vector Xi(f) =
[Hy1 (f), Hrz(f), Hes(f)] (row k of H(f) in
Eq. (5)) which corresponds to a decomposi-
tion of X (f) in terms of convenient orthonor-
nal (because ¥ = I) independent increment,
processes dZ'=[dZ,(f) dZy(f) dZs(f)]" so
that

Xe(f) = dZ'Xu(f) (9)

= ) Hu(f)dZi(f)  (10)

In this representation E[X;(f)*X,;(f)] =
(X,(f),X,;(f)) is a scalar product whereupon
follows (dZ;(f),dZ;(f)) =
EldZ;(f)*dZ;(f)] = 1 from the assumed or-
thonormality between dZ;(f). Using vector
analysis [8], we can rewrite the numerator of
Eq. (7) as (X,(/).X;(/) (Xs(f). Xa(f) —
(Xi(f), X3(f)) (Xs(f), X;(f)) which equals

(Xi(f) A Xs(f), X5(f) A Xa(f)) (1)

where in 3D, A corresponds to the usual vec-
tor product. Using the basis dZ, the vector
product components for X;(f) A Xi(f) are
given by

Hio(f)His(f) — His(f) Hra(f),
Hiz(f)Hpa(f) — Ha(f)Hes (f) (12)

Hiy (f)Hy2(f) — Hea(f)Hia(f)

which is proportional to the j—th column (j #
i, k) of the inverse of H(f), with 1/det H(f)
for propotionality constant. Upon taking the
scalar products in the RHS of Eq. (11) leads

to a particular case of Eq. (6).

4 Final Remarks and Con-

clusion

The alternative of obtaining S™1(f) directly
from Eq. (5), though its complexity is roughly
the same order of magnitude (4N3— two ma-
trix inversions and two matrix multplications)
as for Eq. (6), should be avoided because of
the accumulation of numerical errors due to
likely poor conditioning of A at certain fre-
quencies.

Thus when MAR models are available, one
should prefer Eq. (6) to compute partial co-
herences since only one matrix inversion is
necessary (X71) regardless of how many fre-
quency points are desired, and also because
only scalar products appear in the computa-
tion of 4% (f) for each frequency leading at
once to lower complexity and increased accu-
racy.

Thus when available, a joint multivariate
autoregressive model describing N time se-
ries permits finding the partial coherence func-
tions between pairs of time series with a reduc-
tion in complexity from O(N®) to O(N?) mul-
tiplications foresaking matrix inversions for
each frequency estimate thereby also leading
to more accurate partial coherence estimates.

Remark 4 This complexity reduction is im-
portant given the present availability of EEG
data acquisition systems with as many as N =
128 channels.



Remark 5 The expression of the partial co-
herence as in Eq. (6) lies at the heart of
a recently introduced method [11] for struc-
tural inference based on the analysis of mul-
tiple neural signals.

5 Appendix - Proof of the
Improved Method

The proof of the algorithm in the gen-
eral case follows from the observation that
(1) is the cosine of the dihedral an-
gle [8] between the hyperplanes spanned
the vectors [X;(f),{Xk(f),k # i,7}] and
X, (/) AXk(f), b # i,7}]. This quantity is
proportional to the scalar product between
the (N — 1)— forms given by the wedge vec-

tor products V,,,(f) = X (f) A (/\ Xy (f))
m =1,j, [9] or 7

(Vil£), Vi) (V5(F), V(1))

Remark 6 FEssentially V,,,(f) is a direct fre-
quency domain measure of the complement

T (t) = T (t) — Plrm () [re(t), € # 1,3} orthog-
onal to the subspace generated by x(t),k #

1,7 at frequency f.

The wedge product can be computed di-
rectly from the components of X,(f) =

N
5 Hy( )2
ality, H,,(f) are the elements in a redefinition
of (5) as

S(f) = H(f)ZH(f)H

oy

In this case, using a result from [10] (sec
[.11 p.83), it follows that, V,,,(f), the p — th
component of V,,(f), up to a sign due to
the ordering of factors in the wedge product

¢(f) where without loss of gener-

(that cancels out in |(V;(f), V;(f))[?), equals
{I.-'I( f )} , the minor obtained by eliminating
mp

row m and column p in H(f). It is easy to see
that the latter value is proportinal to each en-
try at column m, row p of the inverse of H(f)
by a factor (—1)™*? x det H(f). Upon compu-
tation of the scalar product (V,,(f), V,.(f)) as

(
)
( 1)m+n<271/2— »-1/25 >
(

(15)
- 2
where (det H(f )) cancels out upon substitu-
tion into (13) thus completing the proof. O
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