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Abstract— This paper addresses the relationship between
Partial Directed Coherence (PDC) and Directed Transfer
Function (DTF), popular multivariate connectivity measures
employed in neuroscience, and information flow as quantified
by mutual information rate.

I. INTRODUCTION

Neuroscience has witnessed an important paradigm change
over the last decade or so. Associated with the rapid advance-
ment in multichannel data acquisition technology, there has
been a growing realization that the inner workings of the
brain can only be grasped by a detailed description of how
brain areas interact functionally. This came to be generally
referred as the study of brain connectivity. This new scenario
stands in sharp contrast to former longstanding approaches
whereby the goal was that of merely identifying which brain
areas were involved in specific functions.

Thus, a large array of techniques have been proposed
to address this problem, specially because of the need to
process and make sense of many simultaneously acquired
brain activity signals [1], [2], [3], [4]. Among the available
methods, we introduced and developed the idea of partial
directed coherence (PDC)[5], [6] which consists of a means
of dissecting the frequency domain relationship between
pairs of signals from among a set of K ≥ 2 simultaneously
observed time series.

The main characteristic of PDC is that it decomposes the
interaction of each pair of time series in the set into direc-
tional components while deducting the possibly shrouding
effect of the remaining K − 2 series. It has, for instance,
been possible to show that PDC is related to the notion of
Granger causality (GC) which corresponds to the ability of
pinpointing the level of attainable improvement in predicting
a time series xi(n) when the past of another time series xj(n)
is known (i 6= j) [7].

In fact, multivariate Granger causality tests as described
in [8] map directly onto statistical tests for PDC nullity.
Like Granger causality, and as opposed to ordinary coherence
[9], PDC is a directional quantity; this fact lead to the idea
of ’directed’ connectivity that allows one to expressly test
for the presence of feedback and to the idea that PDC is
somehow associated with the direction of information flow.
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The appeal of associating PDC with information flow has
been strong, as we have used it ourselves [5], [6]. This
suggestion has nonetheless remained vague and to some
extent almost apocryphal. The aim of this paper is correct
this state of affairs by making the relationship between PDC
and information flow at once formally explicit and precise.

On a par with PDC, is the no less important notion
of directed transfer function DTF [1], whose information
theoretic interpretation is also addressed here for the sake
of completeness.

This paper is organized as follows: in Sec. II we provide
some explicit information theoretic background leaving the
main result to Sec. III followed by illustrations and comments
in Sec. IV and V respectively.

II. BACKGROUND

The relationship between two discrete time stochastic
processes x = {x(k)}k∈Z and y = {y(k)}k∈Z is assessed
via their mutual information rate MIR(x, y) by means of
comparing their joint probability density with the product of
their marginals:

MIR(x, y) =

lim
m→∞

1

m+ 1
E
[
log

dP(x(1), . . . , x(m), y(1), . . . , y(m))

dP(x(1), . . . , x(m))dP(y(1), . . . , y(m))

]
(1)

where E [·] is the expectation with respect to the joint
measure of x and y and where dP denotes the appropriate
probability density. An immediate consequence of (1) is that
independence between x and y implies MIR nullity.

The main classic result for jointly Gaussian stationary
processes, due to Gelfand and Yaglom [10], relates (1) to
the coherence between the processes via

MIR(x, y) = − 1

4π

∫ π

−π
log(1− |Cxy(ω)|2)dω, (2)

where the coherence is given by

Cxy(ω) =
Sxy(ω)√

Sxx(ω)Syy(ω)
, (3)

with Sxx(ω) and Syy(ω) standing for the autospectra and
Sxy(ω) for the cross-spectrum, respectively.

The important consequence of this result is that the
integrand in (2) may be interpreted as the frequency decom-
position of MIR(x, y).

In view of this result, the following questions arise: Does
a similar result hold for PDC? How and in what sense?
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Before addressing these problems, consider the zero mean
stationary vector process x(n) = [x1(n) . . . xK(n)]

T repre-
sentable by multivariate autoregressive model

x(n) =

+∞∑
l=1

A(l)x(n− l) + w(n), (4)

where w(n) = [w1(n) . . . wK(n)]
T stand for zero mean

Gaussian stationary innovation processes with positive defi-
nite covariance matrix Σw = E

[
w(n)wT (n)

]
.

A sufficient condition for the existence of representation
(4) is that the spectral density matrix associated with the
process {x(n)}n∈Z be uniformly bounded from below and
above and be invertible at all frequencies. From the coeffi-
cients aij(l) of A(l) we may write

Āij(ω) =


1−

+∞∑
l=1

aij(l)e
−jωl, if i = j

−
+∞∑
l=1

aij(l)e
−jωl, otherwise

(5)

where j =
√
−1 for ω ∈ [−π, π).

Also let āj(ω) =
[
Ā1j(ω) . . . ĀKj(ω)

]T
and consider the

quantity, henceforth termed information PDC from j to i,

ιπij(ω) =
Āij(ω)σ

−1/2
ii√

āHj (ω)Σ−1w āj(ω)
(6)

where σjj = E
[
w2
j (n)

]
and which simplifies to the origi-

nally defined PDC when Σw equals the identity matrix. Note
also that the generalized PDC (gPDC) from [11] is obtained
if Σw is a diagonal matrix whose elements are distinct.

Before stating the main result, note that to our knowledge,
mention of (6) [12] has not appeared in the literature with
any explicit association with information theoretic ideas.

III. RESULTS

A. PDC

Theorem 1: Let the K-dimensional Gaussian stationary
time series x(n) = [x1(n) . . . xK(n)]T satisfying (4), then

ιπij(ω) = Cwiηj (ω), (7)

where ηj(n) = xj(n) − E[xj(n)|{xl(m), l 6= j, m ∈ Z}]
which is known as the partialized process associated to xi
given the remaining time series. Moreover,

MIR(wi, ηj) = − 1

4π

∫ π

−π
log(1− |ιπij(ω)|2)dω. (8)

To obtain the process ηk, it is worth remembering that it
constitutes the residue of the projection of xk onto the past,
the future and the present of the remaining processes. Hence
its autospectrum is given by

Sηkηk(ω) = Sxkxk
(ω)− sxkxk(ω)S−1

xkxk(ω)sxkxk
(ω), (9)

for xk = [xl1 . . . xlK−1
]T , {l1, . . . , lK−1} = {1, . . . ,K} \

{k} where sxkxk(λ) is the K − 1-dimensional vector whose
entries are the cross spectra between xk and the remaining
K−1 processes, and Sxkxk(λ) is the spectral density matrix

of xk. The spectrum Sηkηk(ω) is also known in the literature
as the partial spectrum of xk given xk [9].

Note that

Gk(ω) = sxkxk(ω)S−1
xkxk(ω) (10)

constitutes an optimum Wiener filter whose role in producing
ηk is to deduct the influence of the other variables from xk
to single out that contribution that is its own.

Theorem 1 shows that PDC from xj to xi measures the
amount of information common to the ηj partial process and
the wi innovation. Its formal proof is omitted due to space
limitations but can be found in [13]. The main idea behind
it is to prove (7) so that (8) follows by use of (2) to produce
MIR(wi, ηj).

B. DTF

Every stationary process {x(n)}n∈Z with autoregressive
representation (4) also has the following moving average
representation

x(n) =

+∞∑
l=0

H(l)w(n− l), (11)

where the innovation process w is the same as that of (4).
In connection to the hij(l) coefficients of H(l), consider

the matrix H̄(ω) with entries

H̄ij(ω) =

+∞∑
l=0

hij(l)e
−jωl, (12)

and let h̄j(ω) =
[
H̄j1(ω) . . . H̄jK(ω)

]T
whence follows the

definition of information directed transfer function (iDTF)
from j to i as

ιγij(ω) =
H̄ij(ω)ρ

1/2
jj√

h̄Hj (ω)Σwh̄j(ω)
, (13)

where ρjj is the variance of the partialized innovation
process ζj(n) = wj(n) − E[wj(n)/{wl(n), l 6= j}] given
explicitly by

ρjj = σjj − σj·Σ−1·· σTj·,

where σj· is the K − 1 vector of covariances of wj(n)
with wj(n) = [wl1(n) . . . wlK−1

(n)]T , {l1, . . . , lK−1} =
{1, . . . ,K}\{j} and Σ·· is the covariance matrix of wj(n).

When Σw is the identity matrix, (13) reduces to the
original DTF [1]. Also when Σw is a diagonal matrix with
distinct elements (13) reduces to directed coherence (DC) as
defined in [14].

For this new quantity, a result analogous to Theorem 1
holds.

Theorem 2: Let the K-dimensional Gaussian stationary
time series x(n) = [x1(n) . . . xK(n)]T satisfy (11), then

ιγij(ω) = Cxiζj (ω), (14)

where ζj is the previously defined partialized innovation
process.
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Because (14) is the coherence between Gaussian pro-
cesses,

MIR(xi, ζj) = − 1

4π

∫ π

−π
log(1− |ιγij(ω)|2)dω (15)

also holds.
The proof of Theorem 2 may be found in [13].
An important remark is that (7)/(14) hold for wide-

sense stationary processes respectively with a autoregres-
sive/moving average representations and that the gaussianity
requirement is unnecessary for their validity. The Theorems
refer to Gaussian processes for simplicity and because the
validity of identities (8) and (15) rest on this assumption.

Also the integrands in (8) and (15) are readily interpretable
as mutual information rates at each frequency.

IV. ILLUSTRATIVE EXAMPLE
Via the following simple accretive example it is possible

to explicitly expose the nature of (7):[
x1(n)
x2(n)

]
=

[
0 0
α 0

] [
x1(n− 1)
x2(n− 1)

]
+

[
w1(n)
w2(n)

]
, (16)

where E[wi(n)wj(m)] = δn,mδi,j , for m,n ∈ Z and i, j ∈
{1, 2}.

Clearly ιπ12(ω) = 0 and

ιπ21(ω) =
−αe−jω√

1 + α2
.

To obtain Cw1η2(ω) using the fact that s21(ω)S−111 (ω) =
αe−jω implies η2(n) = x2(n)−αx1(n−1) = w2(n) so that
Cw1η2(ω) = 0, and hence ιπ12(ω) = Cw1η2(ω).

Now to compute Cw2η1(ω) one must use the spectral
density matrix of [x1 x2]T given by[

Sx1x1(ω) Sx1x2(ω)
Sx2x1(ω) Sx2x2(ω)

]
=

[
1 αejω

αe−jω 1 + α2

]
,

leading to the optimum filter

G1(ω) = s12(ω)S−122 (ω) =
α

1 + α2
ejω

for E[x1(n)/{x2(m), m ∈ Z}]. It is noncausal and produces
α

1+α2x2(n+ 1) so that

η1(n) = x1(n)− α

1 + α2
x2(n+ 1).

Since x1(n) = w1(n) and x2(n) = αw1(n− 1) + w2(n),

η1(n) = w1(n)
1

1 + α2
− w2(n+ 1)

α

1 + α2
,

which leads to

Sw2η1(ω) =
−αe−jω

1 + α2

and

Sη1(ω) =
1

1 + α2

Sw2(ω) = 1,

showing that

Cw2η1(ω) =
−αe−jω√

1 + α2

confirms that ιπ21(ω) = Cw2η1(ω) via direct computation
of the Fourier transforms of the covariance/cross-covariance
functions involving w2 and η1.

It is easy to verify that ζi(n) = wi(n) so that direct
computations also confirm iPDC and iDTF equality in the
K = 2 case (see [5]) when Σ is the identity matrix.

Let model (16) be enlarged by including a third observed
variable

x3(n) = βx2(n− 1) + w3(n) (17)

where w3(n) is zero mean unit variance Gaussian and
orthogonal to the other wk(n), 1 ≤ k ≤ 2 for all lags. This
new equation means that the signal x1 has an indirect path
to x3 via x2 but no direct means of reaching x3.

For this augmented model, the following joint moving
average representation holdsx1(n)

x2(n)
x3(n)

 =

w1(n)
w2(n)
w3(n)

+

0 0 0
α 0 0
0 β 0

w1(n− 1)
w2(n− 1)
w3(n− 1)


+

 0 0 0
0 0 0
αβ 0 0

w1(n− 2)
w2(n− 2)
w3(n− 2)

 ,
which produces

ιγ21(ω) =
αe−jω√
1 + α2

,

ιγ32(ω) =
βe−jω√

1 + β2 + α2β2
,

ιγ31(ω) =
αβe−2jω√

1 + β2 + α2β2
, (18)

and ιγkl = 0 for l > k by direct computation using (13). To
verify (14), one obtains ζi = wi since the wi innovations are
uncorrelated leading to

Sx2ζ1(ω) = α, Sx3ζ2(ω) = βe−jω,

Sx3ζ1(ω) = αβe−2jω, Sx2x2(ω) = 1 + α2,

Sx3x3(ω) = 1 + β2 + α2β2, Sζ1ζ1(ω) = 1 = Sζ2ζ2(ω),
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wherefrom ιγ21(ω) = Cx2ζ1(ω), ιγ32(ω) = Cx3ζ2(ω) and
ιγ31(ω) = Cx3ζ1(ω) using (14).

One may compute this model’s PDCs

ιπ21(ω) =
−αe−jω√

1 + α2
,

ιπ32(ω) =
−βe−jω√

1 + β2
,

ιπ31(ω) = 0,

either via (6), or via Theorem 1.
This exposes the fact that the augmented model’s direct

interaction is represented by PDC whereas DTF from x1 to
x3 (18) is only zero if either α or β is zero which means
that a signal pathway leaving x1 reaches x3 so that DTF
therefore represents the net directed effect of x1 onto x3 as
in fact previously noted in [6].

V. FINAL COMMENTS

New properly weighted multivariate directed dependence
measures between stochastic processes that generalize PDC
and DTF have been introduced and their relationship to
mutual information has been spelled out in terms of more
fundamental adequately partialized processes. These results
enlighten the relationship of formerly available connectivity
measures and the notion of information flow. Theorem 1 is
a novel result. For bivariate time series, results similar to
Theorem 2 have appeared several times in the literature in
association with Geweke’s measure of directed dependence
[15]. The iDTF introduced herein is novel and constitutes a
proper generalization of Geweke’s result for the multivariate
setting while iPDC´s result is its dual. Observe that previous
attempts to use Geweke’s approach in the multivariate set-
ting [16] have been fruitless in providing clear information
theoretical interpretations.

The present results not only introduce a unified framework
to understand connectivity measures, but also open new
generalization perspectives in nonlinear interaction cases for
which information theory seems to be the natural study
toolset.
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