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Abstract To aid prospective neural connectivity
inference analysts and hoping to preclude misconcep-
tion spread, we exploit the didatic value of some of the
issues raised by Albo et al. (Biol Cybern 90: 318–326,
2004) who claim that signal-to-noise ratio (SNR) val-
ues can lead to mistakes in structural inference when
using partial coherence in connection to Gersch’s 1970
method for spotting signal sources (Gersch in Math Bio-
sci 14: 177– 196, 1972). We show theoretically that Gers-
ch’s method is able only to spot which measurement of
some common underlying factor has the least amount of
additive noise and that this has nothing to do with any
reasonable notion of ‘causality’ as suggested by Albo
et al. (Biol Cybern 90: 318–326, 2004). We also show
that despite the inherent structural ambiguity of the
model used by Albo et al. (Biol Cybern 90: 318–326,
2004) to back their claim, its data can nonetheless fur-
nish the correct time precedence hierarchy between the
activities in its measured structures, both when simple
(correlation) and more sophisticated methods are used
(partial directed coherence) (Baccala and Sameshima
in Biol Cybern 84:463–474, 2001a) in a true depiction of
time series causality.
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1 Introduction

Reading Albo et al. (2004) brings to mind a number of
recent issues as the authors examine the use of partial
coherence in the inference of connectivity from a no-
tion put forward by Gersch (1972) in the early 1970s.
The central idea is that partial coherence computation
allows categorizing the relative roles played by neural
structures when considered in triplets. This follows imme-
diately from the fact that the partial coherence (PC)
between a pair of time series describes their mutual
linear relationship after subtracting the effect of the
remaining member of the triplet. Thus, logically one
would pinpoint the third structure as responsible for the
joint activity of the pair before subtraction. This commu-
nality was termed ‘Gersch causality’ by Albo et al. (2004)
(the sole reference to this in the whole of ISI’s database
to date) as opposed to the prior literature which, more
correctly in our view, refers to this as ‘Gersch’ driving.

To investigate PC’s faithfulness in connectivity infer-
ence, Albo et al. (2004) performed the numerical
analysis of data from a model of nondispersive signal
propagation subject to additive observation noise. The
main conclusion was that inference accuracy using Gers-
ch’s method depends on the signal-to-(additive)noise
ratios of the measured variables.

Our aims in this letter are: (1) to spell the theoret-
ical rather than simulation based reason why partial
coherence and Gersch’s method fail in the case of the
propagation model used in Albo et al. (2004); (2) to
explain why it has worked elsewhere Gersch and God-
dard (1970); (3) to argue for the avoidance of the term
causality in connection to Gersch’s proposal and (4) to
provide the discussion of simple connectivity inference
alternatives like partial directed coherence (Baccala and
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Sameshima 2001a; and in Albo et al.’s 2004 simple case
even correlation analysis).

We use basic linear estimation properties to prove
that the phenomenon in Albo et al. (2004) results from
the fact that the time series subject to the least amount
of added noise allows the largest reduction in the partial
coherence between the other series simply because it
is the best estimate of the communality shared by the
other time series (Sect. 2).

This property holds regardless of the time precedence
between the time series which is the basis of any reason-
able definition of causality as we point out in Sect. 3.
In fact, we show that even though the model in Albo
et al. (2004) is structurally ambiguous (Sect. 4), its time
precedence structure can be captured correctly by meth-
ods like partial directed coherence or even by ordinary
correlation; this is illustrated in (Sect. 5) by analysing
simulated data. Our conclusions are collected in Sect. 6.

2 Basic linear estimation results

In a nutshell, the model in Albo et al. (2004) is composed
of three delayed and noise corrupted observations of the
same underlying time series. We can start by examining
any two series under the premise that they share a com-
mon factor z(t) subject to possible delays:

v(t) = z(t − τv) + nv(t), (1)

w(t) = z(t − τw) + nw(t), (2)

where z(t), nv(t) and nw(t) are zero-mean mutually inde-
pendent time series, respectively, with power spectral
densities Sz(f ), Snv(f ) = Snv and Snw(f ) = Snw where we
assumed additive noise whiteness (see Appendix). One
is free to either estimate v(t) in terms of w(t), via a lin-
ear operator Hv|w, or to do it the other way round: use
Hw|v to estimate w(t) in terms of v(t). The best estima-
tion option is the one with the least quadratic estimation
error. One can compare the relative mean error powers
MSE of the estimation alternatives via the ratio (a proof
is given in Appendix):

MSEv|w
MSEw|v

∼ 1 + Sz(f )/Snv

1 + Sz(f )/Snw

. (3)

What this ratio means is that the estimation error is
smallest if the time series with the least amount of addi-
tive noise is used for estimating the series with the most
amount of additive noise. Because the smallest MSE
corresponds to the ability to subtract (account for) the
largest amount of communality, the time series with the
least added noise provides a better estimate of the time
series with the most added noise.

For a set xi(t) of three time series, the partial coher-
ence between any pair i, j is defined as

κij(f ) = Sxi|kxj|k(f )√
Sxi|k(f )Sxj|k(f )

, (4)

i.e. it is just the ordinary coherence between

xm|k(t) = xm(t) − Hm|kxk(t) (5)

(for m ∈ {i, j} �= k) which represents the residual left
from xm(t) after the best possible linear (least-squares)
estimate based on xk(t) via the linear transformation
Hm|k is subtracted. In fact, one can directly calculate (4)
from the spectral densities and cross-spectra from xm(t)
(Bendat and Piersol 1993) as pointed out in Albo et al.
(2004) without resorting to prior xm|k(t) estimates.

This implies that any triplet of time series with the
same underlying communality as in Albo et al.’s (2004)
model have the largest amount of communality extracted
when the time series with least amount of added noise
is used to estimate the other two. In fact, Cases I and
II addressed in Albo et al.’s (2004) are extreme, be-
cause irrespective of the delays involved, the time series
with least amount of added noise (zero noise) perfectly
extracts the communality from the other two leading to
the results reported therein.

3 The issue of causality

The concept of causality rests on the notion that ‘cause
cannot follow consequence’. This implies temporal event
ordering and leads to a strict notion of relative time pre-
cedence.

Definitely, Gersch’s method is incapable of pinpoint-
ing temporality by examining the nullity of |κij(f )|2 be-
cause it is based on the best linear estimators Hi|k and
Hj|k. Despite this, Gersch’s method has been used
successfully (Gersch and Goddard 1970) when neural
activity propagation was derived from a single source
whose power decayed along its propagation path so that
its later delayed versions were relatively more subject
to additive noise in the correct time precedence order.
Therefore, the use of the term ‘Gersch’ causality cannot
in general be considered appropriate and its use only
serves to cloud connectivity inference issues.

There are many ways in which time precedence can
be appraised. One of them is via cross-correlation anal-
ysis (Bendat and Piersol 1993) even though a number
of restrictions hold for its reliable use (Baccala and
Sameshima 2001b). Another is via ideas that reflect
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Granger causality (Granger 1969; Baccala et al. 1998)
such as partial directed coherence (Baccala and Same-
shima 2001a) and allied techniques (Saito and Harashi-
ma 1981; Schnider et al. 1989; Kaminski and Blinowska
1991). But before we briefly illustrate this via numeri-
cal means, we examine in more detail the nature of the
model used by Albo et al. (2004).

4 The theoretical model

In the same notation as Albo et al. (2004), yet rewriting
and numbering the model equations we obtain

x0(t) = 0.8x0(t − 1) − 0.5x0(t − 2) + n0(t), (6)

where using

u1(t) = u2(t − 3), (7)

u2(t) = x0(t), (8)

u3(t) = u2(t − 5), (9)

(see Fig. 1a) leads to the observed variables

x1(t) = u1(t) + n1(t), (10)

x2(t) = u2(t) + n2(t), (11)

x3(t) = u3(t) + n3(t), (12)

which are effectively used for connectivity inference. It
is readily apparent that Eqs. (6–9) differ from Eqs. (10–
12) as only the xi(t), i = 1, 2, 3 variables are accessible
for measurement whereas x0(t) and ui(t) are internal
variables. The only interesting dynamics is contained in
Eq. (6) where x0(t) depends on its past values x0(t − 1)

and x0(t−2), the measured variables x1(t), x2(t) and x3(t)
involve no dynamics of their own and are nothing other
than delayed and noise corrupted versions of x0(t) by
means of n1(t), n2(t) and n3(t), respectively.

4.1 Inherent model ambiguity

It is immediately seen that the same exact observations
xi(t) would be generated if the ui(t) connectivity were
described in different ways. For example,

u1(t) = u2(t − 3), (13)

u2(t) = x0(t), (14)

u3(t) = u1(t − 2), (15)

as shown in Fig. 1b. The most general connectivity struc-
ture possible (Fig. 1c) that generates the same xi(t) is
given by
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Fig. 1 Diagrams represent alternative internal model structures
corresponding to Eqs. (7–9) (a) such as Eqs. (13–15) (b) or
more generally Eqs. (16–18) (c). Diagrams a and b are special
cases of c obtained by, respectively, setting α = 0, β = 1 or
α = 1, β = 0. The negative numbers represent the signal delays
involved

u1(t) = u2(t − 3), (16)

u2(t) = x0(t), (17)

u3(t) = αu1(t − 2) + βu2(t − 5), (18)

where α2 + β2 = 1 to insure power flow preserva-
tion.

Despite this structural ambiguity, this model imposes
a strict time precedence hierarchy among the observed
signals: x2(t) precedes x1(t) which in turn precedes x3(t).
The observed signals xi(t) (i = 1, 2, 3) are devoid of any
intrinsic feedback and there is neither power loss nor
shape distortion in the original signal x0(t) as it propa-
gates.

While the wiring details connecting the structures
remain ambiguous, it is possible to correctly infer the
actual time precedence between xi(t). For brevity, we
next illustrate this numerically.
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Fig. 2 PDC inference
produces identical average
connectivity results leading to
the minumum lag structure of
Fig. 1b because of the use of
model order criteria that
prevent overparametrization.
The nullity of the right panel
graphs correctly shows lack of
signal feedback. Half bars
indicate the observed
standard deviations
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5 Model time precedence inference

We generated data using the model under Cases I and
II (Albo et al. 2004) (they differ in that the amount of
noise added to delayed versions of x0(t) to generate x1(t)
and x3(t) which are swapped according to the case). The
numerical results shown represent averages over 60 time
series realizations that are 256 points long.

5.1 Partial directed coherence analysis

Conceptually partial directed coherence (PDC) is closely
related to partial coherence [3] and was introduced as
its factorization which requires the construction of a
parametric time series model representation. Average
PDC results are shown in Fig. 2 where x1(t) precedes
x3(t) and where x2(t) precedes x1(t) in both Cases I and
II in accordance with Fig. 1b.

Finding the number of parameters the model should
contain is essential to parametric modelling. This step is

usually performed with the help of model order choice
criteria (Brockwell and Davis 1991). These criteria
essentially provide the minimum number of lags p into
the past that need to be considered for adequate model-
ling whilst avoiding overparametrization whose exces-
sive number of parameters would not only contribute
little to fitting but would result in large model estima-
tion uncertainty. The results in Fig. 2 represent averages
of what are mostly p = 3 models as provided by Akaike’s
criterion (Lütkepohl 1993). These results are compati-
ble with the structure in Fig. 1b whose maximum delay
is of three lags. In fact, it is possible to arbitrarily fix
p = 5 when constructing a parametric model as in Fig. 3;
this leads to an average inferred connectivity similar to
Fig. 1c in accordance with the model ambiguity dis-
cussed. In fact, setting p = 5 is a means of forcing the
model to consider the full set of possibilities represented
in Fig. 1c.

In summary, PDC is able to highlight the correct sig-
nal precedence relationship x2 → x1, and x1 → x3 and
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Fig. 3 Comparison between
average PDCs computed for
Case I model orders p = 3
and p = 5. Feedback absence
is correctly detected as well
on the right panels. Use of
p = 3 produced Fig. 1b
whereas Fig. 1c results from
p = 5. Similar results hold for
Case II
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x2 → x3 in all cases. Most importantly, however, absence
of feedback is correctly inferred as well.

5.2 Correlation analysis

Finally, because of its simplicity and nonparametric char-
acter, we also use pairwise correlation (as one in fact
should always do when analysing many time series). The
autocorrelation of x2(t) and its cross-correlations to x1(t)
and x3(t) peaking at lags 3 and 5, respectively, are con-
tained in Fig. 4a for a single 256-point time series trial.
The cross-correlation between x1(t) and x3(t) peaking at
lag 2 is also depicted. To illustrate this, we used a high
noise scenario when independent zero mean white noise
ni(t) of equal unit variance was added to generate xi(t)
from x0(t) according to the model equations. It is clear
from Fig. 4a that the same time precedence between
time series can be deduced as before.

To show that x1(t) and x3(t) are nothing more than
just noise corrupted versions of x2(t), we have rescaled

the cross-correlations functions by their maxima and
shifted them to zero to compare them to the autocor-
relation of x2(t). The results are shown in Fig. 4b: the
autocorrelation is always below the cross-correlations.
All graphs have the same overall shape, consistent with
what one would expect from correlating x2(t) with a
noise corrupted delayed version of itself in the absence
of signal dispersion (signal propagation without shape
distortion).

Therefore, one must conclude that auto/cross-
correlation comparisons suffice to supply information
for this model by showing that the observations are
compatible with a propagated version of x2(t) viewed
under noise corruption. Furthermore the same clear
time precedence hierarchy is obtained as with PDC.
We remark, however, that correlation methods have
limitations when feedback is present or when there
is substantial signal dispersion (see Baccala and
Sameshima 2001 for a comparison between PDC and
cross-correlation).



140 Biol Cybern (2006) 95:135–141

–10 –8 –6 –4 –2 0 2 4 6 8 10

–10 –8 –6 –4 –2 0 2 4 6 8 10

–.4

–.2

0

.2

.4

.6

.8

1

–.4

–.2

0

.2

.4

.6

.8

1

A

B

Time

Fig. 4 a Single trial (n = 256 observed points) autocorrelation
of x2(t) and its cross-correlations with the other time series x1(t)
and x3(t) peaking at delay lags, repectively of 3 and 5, whereas the
cross-correlation between x1(t) and x3(t) peaks at their relative
delay of 2 sample lags which identify the correct lag between time
series even under conditions harsher than Cases I and II in Albo
et al. (2004) and b shape comparison between the latter after lag
correction and amplitude normalization showing distorsionless
propagation

6 Final comments and conclusions

We have shown that Gersch’s method does not have
anything to do with time precedence and hence does
not qualify as a causality criterion. It does, however,
allow one to identify the structure where the same com-
munality is least affected by additive noise regardless
of the time precedence between structures. In fact, this
is the key to its success in past applications when the
signal-to-noise ratio of delayed signal versions was
degraded as the signal spread.

To find the correct time precedence, i.e. causal hier-
archy between activities, calls for other methods. When
little to no signal distortion and feedback are present,
simple correlation methods suffice, whereas the pres-
ence of a complex feedback structure, may call for
more sophisticated methods (Baccala and Sameshima
2001a,b) such as PDC, whose connectivity results must
be interpreted cautiously by taking into account the
existence of possibly inherently ambiguous connectiv-
ity data generating patterns. In practice, this means that
known anatomical constraints must be used to address
the effective connectivity between structures.

Appendix

Derivation of Eq. 3

From the principle of orthogonality (Haykin 1989) it fol-
lows that the optimum linear least squares estimator of
an output v(t) from an input w(t) is given by

Hv|w(f ) = Svw(f )
Sww(f )

(19)

when Hv|w is represented in the frequency domain. How-
ever, using Eqs. (1) and (2) leads to

Hv|w(f ) = γnw(f ) Tτv−τw , (20)

where Tτv−τw is a time shift operator1 and where

γnw(f ) = Sz(f )
Sz(f ) + Snw(f )

(21)

follows from the mutual independence of z(t) and nw(t)
whose power spectral densities are, respectively, given
by Sz(f ) and Snw(f ).

To evaluate estimation accuracy we need to compute
the mean squared estimation error

MSEv|w =
∫

Sv|w(f ) df (22)

where Sv|w(f ) is the power spectral associated with the
estimation error ev|w = v − Hv|ww. As one can easily
show this is given by

1Depending on τv − τw’s signal, Hv|w(f ) may be either
antecipative or nonantecipative, i.e. its output cannot respond
before an input is changed. Sometimes, the notion of being
nonantecipative is termed causality in system theoretic develop-
ments. Here to prevent confusion we explicitly avoid the term
causality in this context.
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Sv|w(f ) = γnw(f ) Snw(f ). (23)

whereas

Sw|v(f ) = γnv(f ) Snv(f ) (24)

is valid due to the symmetry between v and w.
Because the integrand in (22) is nonnegative and

because we assume nw(t) and nv(t) are white, to com-
pare the relative magnitudes of MSEv|w to MSEw|v, it
suffices to compare the ratio between (23) and (24).
This produces (3) which has the same behaviour as the
ratio of interest MSEv|w/MSEw|v.
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