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Abstract— This paper examines the asymptotic behavior of
a newly defined general form of partial directed coherence.
Both confidence interval and null hypothesis testing results are
presented and illustrated.

I. INTRODUCTION

In [1] we introduced the notion of partial directed co-

herence (PDC) as a means of evaluating the connectiv-

ity between neural structures. PDC is a multivariate time

series technique obtained from the factorization of partial

coherence (see [2]), which in the frequency domain closely

reflects the idea of Granger causality[3], i.e. that a time

series x(k) is Granger caused by y(k) only if knowledge of

y(k)’s past proves helpful in predicting x(k). One should

stress that PDC’s representation of Granger causality in

the frequency domain is important since many neuroscience

research scenarios, like sleep staging for example [4], have

long been known to be characterized by typical oscillatory

neuro electrical signal behavior.

Though PDC has been finding increasing applications,

[5], [6], [7], most of it has been carried out by comparing

sample connectivities between groups classified as present-

ing some known disorder against normal controls. It was

only recently, however, that objective trial by trial criteria

have appeared that allow estimating rigorous asymptotic

properties of the PDC estimator. In [8] previously available

connectivity hypothesis tests were rigorously confirmed and

hitherto unavailable PDC confidence intervals were derived.

This scenario has recently been compounded by the intro-

duction of other more general expressions for PDC which

can be more adequate under certain special circumstances.

One such case is that of what we called generalized PDC

(gPDC) [9], which is better suited to the analysis of cases

of large prediction errors or power spectra disparity between

the multivariate channels.

The aim of this paper is to extend the methodology of [8]

to the above more general form of PDC. The presentation

is organized as follows: In Sec. II we briefly review PDC

and its generalized form. This is followed by a concise

statement of the asymptotic mathematical results in Sec. III
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which is numerically illustrated in Sec. IV topped by a brief

discussion in Sec. V.

II. BACKGROUND

The point of departure for defining PDC and its variants

is an adequately fitted multivariate autoregressive time series

(i.e. vector time series) model

x(n) =

p∑

r=1

A(r)x(n− r) +w(n) (1)

to which a multivariate signal x(n) made up by xk(n), k =
1 . . . ,K simultaneously acquired time series conform and

where w(n) stands for a zero mean white innovation process

of with Σw = [σij ] as its covariance matrix and p is the

model order. The coefficients aij(r) composing each A(r)
matrix describe the lagged effect of the the j-th series on

the i-th series, wherefrom one can also define a frequency

domain representation of (1) via the Ā(λ) matrix whose

entries are given by

Āij(λ) =





1−
p∑

r=1

aij(r)e
−j2πλr, if i = j

−
p∑

r=1

aij(r)e
−j2πλr, otherwise

(2)

where j =
√
−1, which allows writing gPDC [9] as

gπij(λ) =

1

σ
1/2
ii

Āij(λ)

√
K∑

k=1

1

σkk
|Ākj(λ)|2

. (3)

A. Problem Formulation

In [8] we addressed the asymptotic behavior of the original

unnormalized PDC when testing for its nullity (i.e. conditions

of asymptotic connectivity rejection) and when obtaining

confidence intervals in the case of statistically significant

connectivity.

To that end, the delta method [10] was applied to (3)

rewritten as a ratio of real quadratic forms in the aij(r)
parameters by the same approach as in [8] where an adequate

rearrangement of the coefficients in (1) as

α = vec[A(1) A(2) . . . A(p)]

allows jointly expressing (2) as real-valued vector:

a(λ) =

[
vec(Re(Ā(λ)))
vec(Im(Ā(λ)))

]
=

[
vec(IpK2)

0

]
− C(λ)α
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where

C(λ) =
[
C(λ)
−S(λ)

]
,

whose blocks are K2 × pK2 dimensional of the form

C(λ) = [C1(λ) . . .Cp(λ)]

and

S(λ) = [S1(λ) . . .Sp(λ)],

for

Cr(λ) = diag([cos(2πrλ) . . . cos(2πrλ)])

and

Sr(λ) = diag([sin(2πrλ) . . . sin(2πrλ)]).

To rewrite (3) consider the following K2 ×K2 matrices:

1) Iij whose entries are zero except for indices of the

form (l,m) = ((j − 1)K + i, (j − 1)K + i), which

equal 1;

2) Ij , which is non zero only for entries whose indices

are of the form (l,m) : (j − 1)K + 1 ≤ l = m ≤ jK.

These matrices can be used to construct

Icij =

[
Iij 0
0 Iij

]

and

Icj =

[
Ij 0
0 Ij

]

so that the general form of the absolute value of squared

gPDC can be written as a ratio of quadratic forms:

|gπij(λ)|2 =
a(λ)T IcijS

−1Icija(λ)

a(λ)T IcjS
−1Icja(λ)

, (4)

where S = I2K ⊗ (Σw ⊙ IK) and ⊙ and ⊗ stand for the

Hadamard and Kronecker products, respectively.

III. ASYMPTOTIC RESULTS

The delta method [10] refers to the behavior of trans-

formed statistics and takes advantage of the continuity of the

transforming functions. This allows Taylor series expansions

in the original variables and the number of available obser-

vations ns. Usually only the first derivative is enough. This

is the case when obtaining confidence intervals (see Sec. III-

A). However, when the first derivative vanishes identically,

as happens under the hypothesis of |gPDC|2 nullity, the

next order derivative must be computed and leads to a non-

Gaussian distribution for the resulting transformed statistic

(see Sec. III-B).

Before proceeding, it is worth introducing some further

notation to allow writing the results compactly.

The results in Secs. III-A and III-B rest on two basic sta-

tistical facts regarding the (1)’s model parameter estimators

which are [11]:

1) Asymptotically Gaussian

√
ns(α̂−α) → N (0,Ωα) (5)

where Ωα = Γ−1
x ⊗ Σw, with Γx = E[x̄(n)x̄T (n)]

for

x̄(n) = [x1(n) . . . xK(n) . . .

x1(n− p+ 1) . . . xK(n− p+ 1)]T ; (6)

and

2) Independent from the estimated innovation noise co-

variances, which are also normal, i.e.
√
ns(ǫ̂− ǫ) → N (0,Ωǫ), (7)

where ǫ = vec(Σw) and Ωǫ = 2DKD+

K(Σw ⊗
Σw)D+T

K DT
K for D+

K standing for the Moore-

Penrose pseudo-inverse of the standard duplication

matrix [11].

A. Confidence Intervals

Since |gπij(λ)|2 is a real differentiable function of α and

ǫ, which conform, respectively, to (5) and (7), application of

the delta method produces a normally distributed transformed

variable whose covariance is obtained by weighing the

original parameters by the gPDC’s local first derivative.

Hence, omitting the explicit frequency λ dependence to

simplify notation, the confidence interval results

√
ns(

∣∣ĝπij

∣∣2 − |gπij |2) → N (0, γ2), (8)

where ns is the number of observations and

γ2 = gαCΩαCTgT
α
+ gwΩwgT

w, (9)

for

gα = 2
aT IcijS

−1Icij

aT IcjS
−1Icja

− 2
aT IcijS

−1Icija

(aT IcjS
−1Icja)

2
aT IcjS

−1Icj (10)

and

gw =
[ 1

aT IcjS
−1Icja

[
(Icija)

T ⊗ (aT Icij)
]
−

aT IcijS
−1Icija

(aT IcjS
−1Icja)

2

[
(Icja)

T ⊗ (aT Icj)
] ]

ξΘK (11)

for ξ = −diag(vec(S−2)), ΘK = (T2K,K ⊗ I2K2)(IK ⊗
vec(I2K ⊗ IK)) and TL,M standing for the commutation

matrix [11].

When the innovation covariance is known a priori or does

not need to be estimated, the term gwΩwgT
w in (5) is to be

taken as zero.

B. Null Hypothesis Test

Under the null hypothesis

H0 :
∣∣gπij

∣∣2 = 0 ⇐⇒ Icija = 0 (12)

both (10) and (11) equal zero, and (8) no longer applies

so that the next Taylor term becomes necessary [12] and is

quadratic in
[
aT ǫT

]T
and weighted by one half of gPDC’s

Hessian at the point of interest with an O(n−1
s ) dependence.

Via a device similar to that used in [8], one can show that

ns(aI
c
jS

−1Icja)(
∣∣ĝπij

∣∣2 − |gπij |2) d→
q∑

k=1

lkχ
2
1 (13)
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where lk are the eigenvalues of D = LT IcijS
−1IcijL, where

L is the Choleski factor of Ω̄ = CΩαCT . Furthermore q =
rank(D) ≤ 2, its value is 1 whenever λ ∈ {0,±0.5} and

when the model order p = 1 for all λ ∈ [−0.5, 0.5].
The result in (13) amounts to a linear combination of

χ2
1 variables whose relative weights depend on estimated

parameter and covariance values.

IV. NUMERICAL ILLUSTRATIONS

A. Simulated data

To illustrate the present asymptotic gPDC results, we sim-

ulated the five-channel toy model we originally introduced

in [1] and a variant of its formulation as proposed by [13]

repeated here for reference,





x1(t) =.95
√
2x1(t− 1)− .9025x1(t− 2)

+ e1(t) + a1e6(t) + b1e7(t− 1) + c1e7(t− 2)

x2(t) =.5x1(t− 2)

+ e2(t) + a2e6(t) + b2e7(t− 1) + c2e7(t− 2)

x3(t) =− .4x1(t− 3)

+ e3(t) + a3e6(t) + b3e7(t− 1) + c3e7(t− 2)

x4(t) =− .5x1(t− 2) + .25
√
2x4(t− 1) + .25

√
2x5(t− 1)

+ e4(t) + a4e6(t) + b4e7(t− 1) + c4e7(t− 2)

x5(t) =− .25
√
2x4(t− 1) + .25

√
2x5(t− 1)

+ e5(t) + a5e6(t) + b5e7(t− 1) + c5e7(t− 2)

containing additionally a large exogenous input e6(t) and a

latent variable e7(t). In the simulations ei(t) were uncorre-

lated zero mean unit variance Gaussian white noise and the

variables were chosen ai ∼ U(0, 1), bi = 2 and ci = 5,

i = 1, . . . , 5 as in [13]. Also for reference, ns = 2, 000 data

points where used and the results are represented as using

unit sample frequency. Application of the Akaike information

criterion (AIC) produced model orders p = 3 on most runs.

1) Toy model without extra variables: Using Monte Carlo

simulations (2, 000 runs), the original toy model excluding

extra exogenous/latent terms produced results consistent with

the asymptotic computations depicted in Fig. 1.

2) Toy with exogenous/latent variables: To provide an

assessment of the impairment that the extra exogenous/latent

variables might have on the null hypothesis thresholds asso-

ciated with (13) we repeated the procedure under the same

conditions of [13]. A typical run can be appreciated in Fig. 2

which stands in sharp contrast to the results in [13] who

claim that PDC is inadequate when extra exogenous/latent

variables are present. It is perhaps useful to note that

correct connectivity patterns could still be obtained even if

the original PDC were being used [13]. The reader may

check our statement by employing and examining the open

access MATLAB code for both PDC and gPDC provided at

www.lcs.poli.usp.br/∼baccala/pdc.

The observed departure from the theoretical asymptotic

distribution for nonexisting connection observed in Fig. 3B is

in accord with the increase of false positives to roughly 7.8%
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Fig. 1. Quantile |gPDC|2s plots (2, 000 runs) and their theoretical
distributions for the model in Sec. (IV-A) without exogenous and latent
variables for computed at λ = 0.2 the normal plot for the existing
connection x1 → x4 (A), contrasted to the absent direct connection
x1 → x5 (B), the |gπ15(0.2)|2 distribution is compared to the quantiles
of two properly weighted chi-squares, producing good fits in both cases.
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Fig. 2. Typical |gPDC|2 run outcome between all channel pairs for the
complete toy model in Sec. (IV-A) using the same plot layout in [13] to
facilitate comparison. The thick lines on plots 1 → 2, 1 → 3, 1 → 4, 4 → 5
and 5 → 4 are above 1% |gPDC|2 threshold and correctly estimated the
connectivity pattern of the model. The frequency dependent thresholds are
represented by dashed lines whereas light gray lines stand for |gPDC|2’s
whose nullity could not be rejected.

when α = 1% is used to detect nonexisting connections.

Approximately 4% false negatives, mostly associated with

the x4 → x5 connection, were observed. The false positive

rate dropped to about 1% upon removal of the exogenous

input/latent variables from (IV-A).

B. Real data with limited samples

To probe asymptotic test validity we analyzed a well

known data set borrowed from [14] relating the melanoma

incidence in the state of Connecticut and the Wölfer sunspot

number measured from 1936 to 1972 (37 time points). Both

time series were detrended before analysis. The common

sense notion that the number of observed melanoma cases

cannot possibly influence solar activity was confirmed and

the sun’s role in the disease vindicated (see Fig. 4) as the

latter is above threshold as opposed to the former. This is an

interesting result considering how small ns is even at α =

1720
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Fig. 3. |gPDC|2s quantile plots (2, 000 runs) portraying the perturbation
caused by including the exogenous and latent variables in the toy model
at λ = 0.2, The existing connection x1 → x4 remains practically
Gaussian (A), whereas one observes a systematic deviation for the absent
direct connection x1 → x5 (B) which can explain the increase in false
positive cases compared to the toy model without the extra variables. In
the simulations the following values were adopted: a1 = 0.59; a2 =
0.52; a3 = 0.72; a4 = 0.98 and a5 = 0.66.
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Fig. 4. The |gPDC|2 and power spectra between sunspot and detrended
Connecticut melanoma incidence 1936-1972 time series. The autospectra are
on the main diagonal in arbitrary units. The black thick line in the Sunspot
→ Melanoma |gPDC|2 panel indicates above the 1% asymptotic threshold
(dashed line) is surrounded by vertical bars to indicate the 99% |gPDC|2

estimate confidence interval. Below threshold |gPDC|2 is represented by a
gray line. Note the peak of |gPDC|2 coincides with Sunspot and Melanoma
series power spectra peaks which correspond to an approximate 11 year-
cycle period. Threshold value dependence on frequency is clear as well as
in Fig. 2.

1%. Also interesting is the fact that test thresholds obtained

via bootstrap statistics with 5, 000 repetitions, see [15], of the

inferred VAR model lead to an average 25% higher threshold

in the melanoma to solar activity case without significantly

altering the actually observed false alarm rates.

V. FINAL COMMENTS

After a brief recap of the definition of generalized

partial directed coherence, a useful frequency domain

connectivity measure between time series, its asymptotic

confidence intervals and null hypothesis rejection were pro-

vided.

The asymptotic results were gauged via Monte Carlo

simulations that showed good large sample fit and robustness

even in the presence of exogenous/latent variables.

By applying the results to real data with just a few data

samples, we provided evidence of the utility of gPDC’s

asymptotics in detecting directed connectivity even under

such adverse conditions thereby opening the way for gPDC’s

rigorous use in practical applications.
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