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Abstract. This paper introduces a new frequency-
domain approach to describe the relationships (direction
of information flow) between multivariate time series
based on the decomposition of multivariate partial
coherences computed from multivariate autoregressive
models. We discuss its application and compare its
performance to other approaches to the problem of
determining neural structure relations from the simul-
taneous measurement of neural electrophysiological
signals. The new concept is shown to reflect a frequen-
cy-domain representation of the concept of Granger
causality.

1 Introduction

For many years the monitoring multiple electric signals
derived from neuronal depolarization has been used to
infer functional aspects of both normal and patholog-
ical brain processes. Among numerous techniques for
displaying and analyzing neural signals of various types
(electroencephalograms, local field potentials, and multi
and single neural unit activity), methods based on the
estimation of correlation/coherence functions between
the activity of pairs of simultaneously analyzed struc-
tures have been the most popular approaches. These
include investigating issues of physiological interest
such as the determination of the source of neural
activity in epileptic seizures (Duckrow and Spencer
1992) and in physiological oscillations, e.g., the alpha
and theta rhythms (Lopes da Silva et al. 1973; Kocsis
et al. 1994), and the activation of brain centers related
to specific behavioral tasks or cognitive processes
(Toyama et al. 1981; Melssen and Epping 1987; Egger-
mont 1990; Bressler et al. 1993; Pawelzik 1994), or the
studies of the correlation between EEG waveforms and
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brain behavioral state, as characterized by specific
patterns like typical signal amplitude and frequency
as, for example, in staging the sleep state (Barlow
1979).

This state of affairs has remained largely unchang-
ed despite the practical and theoretical limitations
of coherence analysis, which merely describes in-
stances when pairs of structures are in synchronous
activity.

In fact little attention has been given to the evo-
lution of the concept of coherence: the idea of directed
coherence (DC) between pairs of structures. Directed
coherence, rather than merely describing mutual
synchronicity, tells us whether and how two structures
under study are functionally connected. While ordi-
nary coherence focuses on the structures themselves
and the mutual synchrony of their activity, DC
stresses their relative structural relationships by
decomposing their interactions into “‘feedforward” and
“feedback™ aspects. This shift is specially relevant as
even today much of the actual structural and func-
tional connectivity in the brain is still derived from the
post mortem anatomical study of experimental
animals, which is unrevealing as to whether links be-
tween structures are ‘“‘active” in a given scenario of
brain processing that underlies the generation of some
specific behavior.

In this paper (Sect. 2), we review the notion of DC as
generalized to the simultaneous analysis of more than
just pairs of neural structures, and place it in the per-
spective of the more fundamental concept of Granger
causality (Granger 1969) in Sect. 3, where we further
introduce a new approach of structural analysis in the
frequency domain that we name partial directed coher-
ence (PDC). In the examples (Sect. 4), we contrast PDC
with DC to show how PDC provides direct structural
information for multivariate autoregressive (MAR)
models that simultaneously model many time series.
PDC is used next to reveal a reversal in the direction of
information flow between the cortex and the hippo-
campus during a spindle episode within a record of slow-
wave sleep.
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2 Background: generalization of directed coherence

Descriptions of the interaction between areas of the
brain have relied on estimates of the cross-spectral
density matrix

Su(f) Sw(f) Siv(f)
S(f) = SZI:(f) Szzz(f) Szzv:(f) )
Svi(f) Sva(f) S (f)

of the measured signals x;(n),1 <i < N.

When analyzing two series at a time, the most widely
used and classically accepted frequency-domain method
studies the ordinary coherence functions

Sy
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that express the simultaneous activation (degree of
relative synchrony) between areas i and j under scrutiny
(Bendat and Piersol 1986). For frequencies where C;;(f)
is high, one can adequately model the observed interac-
tion through a linear operator Ty, i.e.,

X(f) = TiXi(f) 3)

where also one may alternatively employ the inverse
operator of T;; = lefl which produces an equally suitable
alternative description to (3) in the form

Xi(f) = TyuX;(f) = T; ' X;(f) - (4)

This freedom of choice between either (3) or (4) leads to
an ambiguity of description, with one being no more
appropriate than the other.

To resolve this dilemma of arbitrary descriptive
choice, Saito and Harashima (1981) used information
theoretic arguments to introduce the notion of DC
which amounts to a unique decomposition of the ordi-
nary coherence function Cj;(f) into two “directed co-
herences: one representing the feedforward and the
other representing the feedback aspects of the interaction
between the structures under study. In the original
proposal, bivariate autoregressive time-series modelling
was used to compute the directed coherences from the
factorization of (1) when N=2. A practical use of the
DC was reported by Schnider et al. (1989) in a study of
Parkinson’s tremor.

Some attempts of generalization of directed coher-
ence to more than two simultaneously analyzed time
series followed (Kaminski and Blinowska 1991; Baccala
and Sameshima 1998; Baccala et al. 1998). Much as for
N =2, these generalizations rest on a general spectral
factorization result (Gevers and Anderson 1981, 1982)
whereby the cross-spectral power density matrix S(f)
can be factored as

S(f) = H(f)ZH"(f) ()

where the superscript H stands for Hermitian transpose
and

Cyi(f)
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is a matrix of suitable filters described in the frequency
domain and where
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is a covariance matrix. Use the factors in (5) lead to the
following immediate generalized definition of the DC
from j to i as (Baccala and Sameshima 1998; Baccala
et al. 1998):

o () = 2t 6
) =B (6)
where
N
Siu(f) = Zajzjv"[ij(f”z ) (7)
=1

which reduces to Saito and Harashima’s (1981) defini-
tion when N =2.

One additional important restriction of the original
Saito-Harashima method is their explicit presumption
that X is diagonal (¢;; = 0 for i # j). In that case |y,-j(f)2|
can be interpreted as the fraction of the power contrib-
uting to the total power in x;(n) that originates in x;(n) at
frequency f.

For diagonal £ one can show that the ordinary co-
herence can be written as

N
Cy(f) =7 (), () =D v (f) (8)
k=1

where y;(f) 2 i (f), -+ 7y (f)]" with * standing for the
complex conjugate. This justifies the name DC as y,;(f)
can be interpreted as a measure of the influence from
x;(n) onto x;(n) as opposed to y;(f) which describes the
contribution in the opposite direction.

Remark 1. It is easy to show that redefining DC as

Hy(f)
VSi(f)

allows writing the ordinary coherence in full generality
as

Cy(f) =7 NEN)

7ij(f) = (9)

(10)



with 5,(£) 2 51 (/) - - 7w (F)]" , where

Si(f) = (f)Zh(f) ,

even if X is not diagonal.

Because of the restriction of Saito and Harashima
(1981) to diagonal X, Kaminski and Blinowska (1991)
introduced an alternative quantity to describe interac-
tions among neural elements that forsakes X altogether.
They termed their estimator the “directed transfer func-
tion” (DTF). It coincides with the magnitude of (6) when
g;; are all set to 1, i.e.,

Hy(f)  __ Hy(f)
\/§|H,-,-<f>|2 VR Oh()
j=1

In practice, DC/DTF estimation makes extensive use of
multichannel autoregressive models of the form (Fran-
aszczuk et al. 1985; Schnider et al. 1989; Kaminski and
Blinowska 1991; Franaszczuk et al. 1994; Kaminski
et al. 1997; Korzeniewska et al. 1997; Baccala and
Sameshima 1998; Baccala et al. 1998):

DIF; (f) = . (11)

x1(n) » xi(n—r) wi(n)

=> A : +
r=1

xy(n—r)

(12)
xy(n) wy (1)

wherefrom the joint spectral density estimate of (5) is
obtained by

H(f) =A"'(f) = (I-A(f))" (13)

and where X is the covariance matrix of w;(n), while

A(f) = zp:Arz_’ . with
2 A
[ain(r)  an(r) ain(r) |
A = e
| ani () awn(r)

where the coefficients a;;(r) represent the linear interac-
tion effect of x;(n — r) onto x;(n).

3 Granger causality and the new approach

In their original paper, Saito and Harashima (1981) refer
to a possible rationale for their method in what is now
known as Granger causality (Granger 1969). By defini-
tion, an observed time series x;(n) Granger-causes another
series x;(n), if knowledge of x;(n)’s past significantly
improves prediction of x;(n); this kind of predictability
improvement is not reciprocal, i.e., x;(n) may Granger-
cause x;(n) without x;(n) necessarily Granger-causing
x;(n).
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Conceptually, Granger causality is a well-defined idea
originating in econometrics where it possesses several
statistical testing procedures (Lutkepohl 1993). Its key
notion is the exclusive consideration of past samples in
prediction improvements. When the present sample of
x(n) contributes significantly to the predictions of y(n), it
is usual to speak of instantaneous Granger causality. It is
important to keep in mind that these forms of causality
are distinct: the first refers to exclusive use of the past of
a time series in helping predict another time series, while
instantaneous Granger causality concerns itself only
with the predictability effect of the present of one time
series upon another time series. Most important for now
is that statistical tests of lack of instantaneous Granger
causality reduce to showing that X is diagonal.

Assessing the extent of Granger causality provides a
measure of the strength of interaction between structures
under the rationale that predictable variations in a series
— due to the consistent emergence of variations in an-
other series — takes place if their mechanisms of gener-
ation are somehow physically linked, as with active
neuroanatomic connections.

Some statistical Granger causality tests (GCTs) are
based on the direct examination of the a;;(r) coefficients
in MAR modelling, as the latter describe the linear
prediction effect of the rth past sample x;(n — r) of x;(n)
on predicting x;(n). Thus, if one may statistically show
that a;;(r) = 0 for all values of r, the hypothesis of x;(n)
Granger-causing x;(n) can be rejected. A specific con-
ventional test of this kind applicable to the joint process
of multiple neural signals is reviewed in Baccala and
Sameshima (1998). Other tests are contained in Lut-
kepdhl (1993).

The main drawback of most Granger causality tests,
is that, unlike what happens for DC, a frequency-do-
main picture of the interaction between neural structures
is usually unavailable except when N =2 (Geweke
1982).

Furthermore, to gauge relationships between pairs of
time series when processing N > 2, one often observes
conflicting results between DC/DTF and Granger cau-
sality tests, i.e., x;(n) may have high DC to x;(n) and yet
it may be possible to reject Granger causality from x;(n)
to x;(n) using conventional GCT. As a matter of fact,
this happens frequently when simultaneously analyzing
more than two time series. By contrast, when N =2
(Example 1), DC/DTF and Granger causality tests
always agree.

To provide a frequency-domain picture for Granger
causality descriptions, we propose the novel concept of
PDC. It is based on another popular quantifier of the
relationship between pairs of signals — the so-called
partial coherence function, |Kk;(f )|2, that describes the
interaction between x;(n) and x;(n) when the influence
due to all other N — 2 time series is discounted. The key
result is the following factorization (Baccala, personal
communication, 2000):

At ()T a(f)
V@A) @ N 'a()

Kk (f) = ; (14)
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where X is the prediction error covariance matrix
associated with the model in (12), and a;(f) is the kth
column of the matrix

A(f) =1-A(f) = [ai(Nax(f) ... an(f)] -

By analogy with (10) — where the DC reflects terms into
which one can decompose the ordinary coherence — we
may adopt the following general definition:

Definition 1. The partial directed coherence factor
(PDCF) from j to i is given by

Ay(f)
al(f) X af)
where 4;;(f) is the i, jth element of A(f).

It follows immediately that the partial coherence be-
tween i and j is given by

my(f) 2 (15)

k() = m' ()2 () (16)
for ni(f)é [m1:(f), ..., m(f)]", whence the motivation
for m;;(f)’s name.

Because

—i2nfr
)

1— Zaij(r)e
ayn =9 (17)
=S e,
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otherwise

the PDCF depends mostly on the a;;(r) coefficients that
describe the relationships between the present of time
series x;(n) and the past of x;(n) as compared to x;(n)’s
past effect on the other time series.

Because X affects the denominator, (16) mixes
Granger causality with instantaneous Granger causality.
To completely remove the instantaneous effects, one
might prefer to describe Granger causality relations
alone through

i (f) 2 (18)

which is a function of a;;(r) alone, forsaking ¥ in a
completely analogous fashion to DTF. Obviously a dia-
gonal X with equal unit variances in (15) simplifies to (18).

Hence to portray Granger causality exclusively as
opposed to its mixture with instantaneous Granger
causality, we adopt:

Definition 2. The partial directed coherence (PDC) from j
to i is given by (18).

Note also that, as for DC/DTF (Baccala and Same-
shima 1998) the following normalization properties
hold:

0 < |m;(f ) <1 (19)

and

Z |7 (f

forall1 <;<N.

Because of the latter normalization conditions, 7;;(f)
represents the relative coupling strength of the interac-
tion of a given signal source structure j with regard to
structure i as compared to all of ;’s interactions to other
structures. As such, PDC ranks the relative interaction
strengths with respect to a given signal source.

NE=1, (20)

Remark 2. This is an important difference between DC/
DTF and PDCF/PDC since ylj(f ) is normalized with
respect to the structure that receives the signal, whereas
m;(f) is normalized with respect to the structure that
sends the signal.

Remark 3. Tt turns out the equality in (20) is only a
special case of normalization that could equally be
applied to PDCF. If we define the square of the Vector
norm of the vector 7;(f) as \nj ) = nH(f)Z b7:(f),
the general result is |7;(f )

Remark 4. When i=j, the PDC |7;(f)| functions
describe the fraction of the time evolution represented
by exclusive consideration of x;(n)’s own past on itself
that is not explicable by the other measured time series;
in other words, it represents how much its own past
couples to its present state, whereas the |DTF;(f)| reflect
the power density due to none of the other series.

3.1 Additional comments

3.1.1 Instantaneous granger causality. In the linear least-
mean-squared error prediction context, one can show
that X is diagonal if the present state of a series adds
little to the prediction of other time series (Lutkepdhl
1993). Relationships between present samples of the
x;(n) time series are described exclusively by correlations
among the w;(n) processes. Several tests exist to check
for the diagonality of X (Lutkepohl 1993).

Suppressing the use of X as in (18) (or in Eq. 11, as
H(f) is actually computed exclusively from A4 (")) is what
specializes the problem to the exclusive consideration of
past values in prediction. This is precisely in tune with
the Granger causality picture and contrasts with the
multivariate Granger causality test reviewed in Lut-
kepohl (1993) and Baccala et al. (1998) which is, at least
in part, affected by the full structure of X exactly as
happens for PDCF inference using (15).

3.1.2 Computational advantages of PDC. Because PDC
makes direct use of A(f) in (12), it has the advantage of
dispensing with the matrix inversion in (13) for each
frequency of interest. This is computationally more
efficient and avoids numerical imprecisions that might



result from possible ill-conditioning of A(f) at some
frequencies. This can be critically important in view of
the use of small data samples in practical estimation.

3.1.3 Variations on PDC estimate. As in the definition of
DC (6), one possible variation in PDC estimation can
take into account large amplitude differences in the x;(n)
signals by using just the diagonal elements of X! as
weighting factors of each component in a;(f).

Alternative means of normalization for 4;; are pos-
sible and are under study. None of them, however, can
be interpreted as immediately related to partial coher-
ence.

4 Tllustrative Examples

Previously published methods using DC and close
variants restrict themselves either to diagonal £ or by
forsaking the X structure, so in this paper we employ
only PDC (18) in the following examples. We begin with
a theoretical example showing PDC’s equivalence to
DTF when N = 2.

Example 1. When only two series, N =2, are being
analyzed simultaneously, the interaction analysis can be
approached using either (6) or (15). This is possible
because Hj;(f) is proportional to A;(f) (i # j), where
nullity of one implies nullity of the other, indicating lack
of influence in x;(n) that is attributable to x;(n). In fact,
the resulting |[DTF;(f)| and |7;;(f)| are equal for i # j. It
is easy to see this from (6) as

[, ()]
P IHa (P + Ha(f)P
and
_ A A Hyy Hypp
Al) = [AZI ((;; Azz(f ] {Hz szg;]
1 [ Hy(f) —Hi(f) ’
—Hy (f)  Hu(f)
with A = Hy () Haa(f) — Hi2(f)Ha (f), so that
)] = —— Al e1)
VGNP + Ay ()P
leads upon substitution to
Ta(f) = Ol )
V1= Ha()F + Hoa (/)P
and
() = —— IOl @)

VIER(P + | = Ha (/)P

Note that the equalities do not occur for identical indices;

ie., we have [y, (f)| = [m2(f)] and |75, (/) = [0 (/)]
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In the following examples we compute DTF and PDC
for known models to show that the estimators produce
different results for N > 2 simultaneously modelled series.

Example 2. Suppose that three simultaneously observed
time series were generated by the equations:

x1(n) =0.5x;(n — 1)+ 0.3x2(n — 1) + 0.4x3(n — 1)
+wi(n)

x2(n) = =0.5x;(n — 1)+ 0.3x2(n — 1) + 1.0x3(n — 1)
+ wa(n)

x3(n) = —0.3x(n — 1) — 0.2x3(n — 1) 4+ w3(n)

(23)

where w;(n) are zero-mean uncorrelated white processes
with identical variances. One readily sees that only x3(n)
is not influenced explicitly by the past state of x;(n).
The corresponding |DTF;;(f)| and |7;;(f)| are plotted
in a matrix layout in Fig. 1, and show that an explicit

—

a PDC
1
i=1
1
- i I
0 | = —— |
1
0
1] 5 0 5 0 5
i1 j2 j=3
b DTF
1 ’
i - LJ h
0
1
0
1
0
0 S5 0 S 0 5

-,
)

J=1 =2

Fig. 1. a Matrix layout plots for partial directed coherence PDC,
|T;;(f)|, and b |DTF;(f)| describing (23). Of note is that 73 (f) =0
reflects the immediate independence of x3(n) on xi(n). This same
information cannot be obtained by inspecting DTF3; (f). See Remark
4 for the meaning of plots when i = j
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direct lack of influence is only fully described by the
latter where |73; (f)| = 0, as opposed to what happens to
|DTF3(f)]

Uses of DTF have centered around the determination
of perturbation foci (Franaszczuk et al. 1994; Kaminski
et al. 1997), so consider:

Example 3. In the interconnection structure summarized
in Fig. 2a, the signal propagates from a measured
driving oscillating source x;(n) to x»(n) and indepen-
dently to x3(n). The signal x;(n) also couples to what
would be an otherwise independent oscillator com-
prised of x4(n) and xs(n) if there were no coupling
from x;(n). Employing a specific matching MAR model
(see caption of Fig. 2), results in |7;(f)| = 0 (Fig. 2b)
whenever no direct connection exists in Fig. 2a, whereas
|DTF;(f)| # 0 (Fig. 2c) for all j when i = 1, and also for
DTFys(f) and DTF54(f). Thus the structural mapping of
the series is not clearly represented in a direct way in
Fig. 2c.

Example 4. In Fig. 3a, the signal from a measured
oscillating driving source x;(n) propagated sequentially
to x,(n) and x3(n) (noise corrupted and attenuated forms
of xi(n)), which couples into an otherwise independent
oscillator comprised of x4(n) and xs(n). Again employ-
ing a specific matching MAR model (see caption of
Fig. 3) results in |7;;(f)| = 0 (Fig. 3b) whenever there is
no direct connection in Fig. 3a; i.e., no explicit depen-
dence of x;(n) on the past states of the other series,
whereas in Fig. 3c, |DTF;(f)| # 0 for all i > ;j and also
for |DTFys(f)|, leading to the conclusion that the
structural mapping is not as clearly apparent through
DTF;;(f) as for m;;(f).

Example 5. Closing the loop from xs(n) into x;(n) of the
previous example results in Fig. 4a with a specific
matching MAR model described in the caption of
Fig. 4. This reveals that plotting |7;(f)| (Fig. 4b) still
reflects the underlying structure, whereas little inference
can be made from DTF;;(f) which is nonzero for all / and
Jj (Fig. 4c).

Finally consider:

Example 6. A structural change in Fig. 3a, which yields
Fig. 5a, whose DTF;;(f) (Fig. 5c) is virtually identical to
that of Fig. 3c, but its structural differences are easy to
pinpoint through 7;;(f) (Fig. 5b).

Remark 5. In all of these examples, DTFj;(f) is nonzero
whenever there is some signal pathway that goes from
structure j to structure 7 in the structural graphs that
describe the model. While DTF marks the existence of
signal pathways connecting structures either directly or
indirectly, PDC resolves the existence of direct connec-
tion between pairs of structures.

4.1 PDC analysis of synchronized sleep data

Figure 6 contains a 30-s record of slow-wave sleep in the
rat with a spindle episode between 13 and 15s as

i=3

" ]
]
.

=1

i=2

B
A
=i
'
A

i=4

=5

5 0 50 5
J=3 j=4 =5

Fig. 2. a Diagram depicting the mutual influences on each series due
to the past states of the other series, corresponding to the multivariate
autoregressive model given by

50

A g

x1(n) = 0.95v/2x; (n — 1) — 0.9025x; (n — 2) + w1 (n)

x2(n) = 0.5x;(n — 2) + wa(n)

x3(n) = —0.4x;(n — 3) + ws(n)

x4(n) = —0.5x; (n — 2) + 0.25v/2x4(n — 1)
+0.25v2x5(n — 1) 4 wy(n)

xs5(n) = —0.25v2x4(n — 1) 4+ 0.25v/2x5(n — 1) + ws(n)

In comparing the equations to the diagram one readily sees x(n) as a
direct source to x3(n), x3(n), and x4(n). If isolated, x4(n) and xs(n)
would themselves alone form an oscillator. There is no direct coupling
from x (n) to xs(n). Each variable in the model is affected by additive
noise (not displayed in a). The corresponding |7;(f)| and |DTF;(f)|
are plotted in b and ¢. Note the immediate mapping of |7;(f)| = 0
whenever direct connection is lacking. Except for |[DTFs; (f)| # 0, the
same lack of nullity in |DIF;(f)| points to the same structural
inference as |7;(f)|. See Remark 4 for the meaning of plots when

L=]

NN a2



i=4

L
]

i=5

i=5 U(I,"

Fig. 3. a Diagram modified from that of Fig. 2a when now x,(n)
directly influences x,(n) only, which in turn modifies x3(n), and then
finally couples to x4(n). As before, x4(n) and xs(n) would form an
oscillator if isolated. Dynamically the signal propagation situation can
be formalized as

x1(n) —0.9025x (n — 2) + wi(n)
x2(n) = —0.5x1(n — 1) + wa(n)
x3(n) = 0.4x2(n — 2) + ws(n)
(n) = —0.5x3(n — 1) +0.25v2x4(n — 1)
+0.25v/2x5(n — 1) + wy(n)
xs5(n) = —0.25v2x4(n — 1) 4+ 0.25v/2x5(n — 1) 4+ ws(n)

As before, b and ¢ contain |7;(f)| and |DTFj;(F)|, respectively. Again,
immediate mapping only of |7;(f)| =0 shows lack of a direct
connection. The pattern of |DTFj;(f)| # 0 spans the lower diagonals
of the matrix. See Remark 4 for the meaning of plots when i = j

=0.95V2x1(n — 1)

monitored from cortical areas (A10, A3, and A17) and
hippocampal fields (CA1 and CA3) and the dentate
gyrus (DQG). These six signals were simultaneously
subjected to analysis using MAR modelling, wherefrom
PDC estimates were computed for 2-s-long segments
and 50% overlap between them. The resulting time-
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-

i=3

-

=4

-0

=5

¢ DTF

Fig. 4. a In this example the loop is closed from xs(n) back to x;(n)
via a direct connection; i.e., now the first equation in the caption of
Fig. 3 becomes:

x1(n) = 0.95V2x; (n — 1) — 0.9025x, (n — 2)
+0.5x5(n = 2) + wi(n) .

b As before, the mappings of direct coupling are preserved by |;;(f)|.
¢ Whereas |DTF;;(f)| # 0 for all values. This gives no hint as to actual
direct connections. See Remark 4 for the meaning of plots when i =

frequency evolution of PDC is displayed in Fig. 7 for
A10 and CA1, whose interaction switches directionality
during a spindle episode that starts at around second 13
and lasts roughly 2 s. Note that the interaction between
these areas was preceeded by an increase in PDC from
A10 to CA1 which changed direction during the episode
itself. Also note the increase in ordinary coherence
roughly 8 s before and after the spindle.

Combined detailed summaries of PDC and DTF re-
spectively for the pre-spindle and spindle periods are
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=
0 e

i=4

- ] b
0
1
i=4 | i
0
1
i=5
0
0 50 5 : .
= =2 j=3 4 J=

Fig. 5. a Depicts a structure modified from Fig. 3, where x;(n)
connects to x4(n) via two distinct pathways, through x,(n) and x3(n),
respectively. That is,

(n) = 0.95v/2x, (n—1)—0.9025x,(n — 2) + wi (n)
x2(n) = —0.5x1(n — 1) +wa(n)
(n) =0.1x;(n — 4) — 0.4x3(n — 2) + w3(n)
(n) = —0.5x3(n — 1) +0.25v2x4(n — 1)
+0.25v2x5(n — 1) 4+ wa(n)
x5(n) = —0.25v2x4(n — 1) 4+ 0.25v2x5(n — 1) + ws(n)

Clearly, DTF;(f) (Fig. 5c vs. Fig. 3c) fail to portray the structural
differences that 7;(f) (Figs. 5b and 3b) reveal immediately. See
Remark 4 for the meaning of plots when i =

available in Figs. 8 and 9 for all the simultaneously
analyzed structures. These figures also contain schematic
structural diagrams (graphs) associated with PDC and
DTF for each period. These graphs were constructed
using the maximum values of PDC and DTF in Tables 1
and 2. Interaction strength was portrayed using arrow

types and widths on a five-level scale similar to that used
in Fig. 7 (no arrow below 0.2).

One readily sees that the pre-spindle period lacks
hippocampal feedback to cortex (see PDC Fig. 8a and
c). Except for links from DG to A17 and from CA3 to
A17 (see Sect. 5.2 for a discussion on the unavailability
of rigorous confidence levels), DTF marks of the exis-
tence of links (whether direct or indirect) between the
structures involved. Note that the DTF graph (Fig. 8d)
is consistent with the non-existence of a signal pathway
from A10 to A3 in the PDC graph (Fig. 8c).

This contrasts sharply with the spindle episode when
PDC (Figs. 9a and c) allows discriminating feedback
from hippocampal structures to cortex, mostly via CAl
through A10. PDC also permits the visualization of the
signal propagation pattern in the cortex from Al7 (a
sensory area) through A3 and A10 (motor area) that
ultimately feeds back to A17. The DTF graph (Fig. 9c¢),
on the other hand, is unable to portray these signal flow
details as most structures are bidirectionally linked,
confirming the existence of signal pathways (direct and
indirect links) with various strengths connecting all the
structures.

5 Discussion

In developing PDC we provide an alternative frequency-
domain representation of multivariate processes ground-
ed on the notion of Granger causality and which adds to
the notion of DC/DTF. This is specially important
because of the conflict between DTF (as in Example 2)
with test designed to infer the linear causal structure
(GCT) between members of multiple time series (Bac-
cala et al. 1998). Much of the rationale behind this
proposal is that Granger causality between time series is
a more fundamental notion compared to ideas like DTF
when N > 2. As portrayed in our examples, plotting
m;(f) provides graphical representations of the struc-
tural interaction in which =;;(f) nullity follows immedi-
ately from a;(r) =0 (1 <r <p), indicating lack of
Granger causality.

5.1 Comparison between DC/DTF and PDC

Our examples expose cases when DC/DTF and PDC
(and GCT) must agree. A basic result is that they always
agree for N = 2, as shown theoretically in Example 1.
When N > 2, time series are analyzed simultaneously;
DTF nullity implies PDC nullity and vice versa only if the
structure of the H(f) matrix is preserved upon inversion
(as for upper (lower) triangular matrices, whose inverse is
also upper (lower) triangular). In cases such as this, aside
from the issues of statistical and numerical reliability,
DTF and PDC lead to identical conclusions as to the
interaction between pairs of structures.

While 7;;(f) provides explicit information about
structure by expressing the direct interactions, 7,;(f)
furnishes indirect information about such interaction. As
discussed in Baccala and Sameshima (1998) and Baccala
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Fig. 6. A thirty-second-long local field-po-
tential recording from rat in slow wave sleep
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in which a spindle episode occurred between
13 and 15 s as monitored from left hemi-
sphere of cortical areas 410, A3, and A17,
and hippocampal CAI and CA3 fields, and
the dentate gyrus (DG). The measurements

were sampled at 256 Hz with 10-bit resolu-
tion using bipolar microelectrodes with a 1-
mm tip separation. The lower trace (EYES)

monitored muscle activity related to eyeball
movement. The letters 4 and B mark
subsegments whose analyses are displayed in
Figs. 8 and 9
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Fig. 7. a Gray-scale time-frequency repre-
sentation of partial directed coherence
(PDC) (computed via the simultaneous
analysis of all six neuroactivity signals in
Fig. 6) and ordinary coherence between A10
and CAI obtained by collating estimates for
adjacent 2-s-long segments (with 50% over-
lap): the y-axes are scaled between 0 and
48 Hz. In a, |ta10—ca1(f)| = 0 for most of

c Ordinary Coherence

;3

Time (s)

et al. (1998), Vij (f) represents the fraction of the power in
the spectrum in x,( ) originating from each x;(n), so that
it describes pairwise structure interactions that may be
either direct or indirect (via the many possible pathways
formed by signal propagation through intermediate
structures). As such, y,(f)/DTF;(f) is a descriptive
summary of structural interaction over all pathways
linking two structures. If y,,(f)/DTF;(f) is significant,
one can at least infer the existence of indirect signal
feedback. Non-null 7;;(f) tell us that direct feed back is
present; this reflects more closely the possible presence of
active direct physical links between structures.

;:n.azl.r!

the segment; i.e., no information flows from
CAI to AI0, except during the spindle (B)
when |Ta10—ca1(f)| > 0, for 0 < ' < 10 Hz,
whereas in the opposite direction (b),
|Tca—ay, (f)| enjoys continuous change
along the record. During the spindle episode
[Tca—a(f)| = 0 leading to an observed
: switch in the direction of information flow
30 between these structures. The ordinary co-
herence is depicted in ¢; note its higher value
during the spindle event

5.1.1 Source determination. In some cases, as iIn
searching for signal foci (sources), one may use either
m;;(f) or DTF;(f). In Examples 3, 4, and 6, by working
with the 7;;(f) information in Figs. 2b, 3b, and 5b back
into the diagrams in Figs. 2a, 3a, and 5a, respectively,
would readily lead to identification of x;(n) as the
focus. The same conclusion follows from DTF;(f) by
noting that x;(n) receives no power from the other
series (DTFi;(f) =0 for all j# 1) while at the same
time fractions of its power contribute to all x;(n) as
DTF;(f) # 0. As such, previous EEG uses of DTF;(f)
for epileptic focus determination (Franaszczuk et al.
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A0 A3 A17 CA1 CA3 DG A10 A3 A7  CA1  CA3 DG
c d
Fig. 8a—d. Pre-spindle two -sec-
ond-long segment A (Fig. 6)
PDC (a) and structural schematic
(c) using Table 1 values depicting
lack of hippocampal feedback to
cortex. This is confirmed by DTF
(b) (and its schematic, d). The
schematics code interaction
strength via arrow line type and
width (0 < no arrow < 0.2 <
dashed line < 0.4 increasing
width solid lines in steps of 0.2).
See the text for further details
a b DTF
A1D A1D i:
A3 A3 J\-’\_
o
AT A7 V\'s
CA1 CA1 o
CA3 CA3
DG DG
AlD A3 A17 CA1 CA3 DG
c d Fig. 9a-d. Spindle PDC (a)

(Two-second-long segment B,
Fig. 6) for all structures and its
structural schematic (c¢) based on
Table 2 values and portraying
hippocampal feedback to cortex
(via CAI to A10). The DTF (b)
(and graph d) is more complex
and almost fully connected, hin-
dering clear resolution of the
signal flow pattern. The sche-
matics code interaction strength
as for Fig. 8. See the text for
further details




max |[PDC]|
Table 1. Yalues Of(mux\DTF\) for ' 0.53 0.03 0.06 0.09
the pre-spindle period (segment  A10
E 0.58 0.06 0.10 0.09
A4 in Fig. 6). These values were
used in constructing the graphs a3 (009 ) (0 27 ) (0-06 ) < 0~04> <0~07 )
in Fig. 8c and d. This table 0.13 0.28 0.14 0.12 0.17
follows the same reading con- 0.41 . 0.11 0.12 0.10
vention of source (column) to Al7 0.43 ) 0.17 0.23 0.23
3¥F(?lrog§t) as the PDC and CAl 0.66 . 0.23 0.32 0.11
0.49 . 0.57 0.32 0.38
0.27 . 0.33 0.39 0.67
CA3 (0.61> ( . ) (O.Sl) (0.29> (0.48)
0.44 . 0.93 0.47 0.41
DG (0.58) ( . ) <0.48> <0.35) (0.31)
Al0 A3 Al7 CAl CA3 DG
max [PDC|
Table 2. Values of (mx‘mﬂ) for o . 0.32 0.49 0.33 031
the spindle episode (segment B 0.76 0.32 0.22 0.19
in Fig. 6). These values were
used in constructing the graphs CA3 <8(2)§ ) <8L713 ) ( 8;3) ( 883 > (8(1)3 >
in Fig. 9c and d. This table : : ) : :
follows the same reading con- 5 {7 0.44 . 0.11 0.07 0.11
vention of source (column) to 0.37 . 0.34 0.18 0.13
row (target) as the PDC and 0.14 ) 0.53 0.44 0.25
DTF plots cal (0.20) < : ) (o.sa) (0.41) (0.28)
0.24 . 0.54 0.28 0.52
CA3 (0.27> ( . ) (0.72) (0.22) <O.28>
0.10 . 0.19 0.53 0.30
e () (o) (o%)  6F) ()
A10 A3 Al7 CAl CA3 DG

1994; Kaminski et al. 1997) are fully justifiable despite
the larger computational complexity involved in calcu-
lations (matrix inversions are needed).

Though containing essentially the same information
DC/DTF exposes it in a less clear fashion when
compared to 7;(f). When a more detailed picture is
sought — as in appraising the dynamic role of anatomi-
cally separate cortical and subcortical structures — 7;;(f)
is able to break up the interactions between structures
into their direct pairwise components. This exposes
additional details of the signal propagation between
structures (Example 6).

5.2 Comments on estimation issues

In practice, PDC estimation requires the reliable fitting
of MAR models, which is treated in depth elsewhere
(Lutkepohl 1993). This is also true for DC/DTF. On a
whole the subject of fitting MAR models is not without
its subtleties, such as model order estimates (choice of p
in Eq. 12), diagnostic tests on model residues, and
perhaps most importantly the issue of joint time series
stationarity whereupon the estimation of a;;(r) is based
(see Bernasconi and Konig 1999). One important point
is that the issue of stationarity may be approached in the
physiological setting by an empirical appraisal of the
behavioral state of the animal under observation.
Another important limitation that affects both DC and

PDC is the adequacy of modelling neural signals
linearly, as in some contexts nonlinear interaction
models may be more appropriate.

Reliable structural inference depends heavily on the
issue of statistical significance (rejecting interaction
absence) via PDC (and/or DTF). Determination of rig-
orous estimate significance — even asymptotic — remains
an important and largely open problem for these esti-
mators. Preliminary simulation studies indicate that
statistical significance depends not only on signal length
but also on N, the number of simultaneously processed
structures. In practical applications, averaging results
from similar physiological scenarios was used in exam-
ples of DTF analysis by Kaminski et al. (1997). Similar
procedures can be used with PDC estimation.

Remark 6. To our knowledge, the only published results
on significance are due to Schnider et al. (1989), who
have made extensive simulations of DC for N =2
leading to a choice of a 0.05 threshold above which
interaction is deemed significant.

5.3 Conclusions and final remarks

This paper draws the connection between Granger
causality as the basis for prior structural descriptors
such as DC/DTF and the new one represented by
PDCF/PDC, and their relationships as terms in decom-
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positions of ordinary and partial coherences respective-
ly. While PDC portrays the relative strength of direct
pairwise structure interactions, DC/DTF represents a
balance of signal power that spreads from one structure
to another over many possible alternative pathways.

With the help of signal preprocessing via adequate
kernels (Baccala and Sameshima 1998), the PDC tech-
nique can be applied to the simultaneous analysis of
single and multi-unit activity from many electrodes.
Examples of PDC in this kind of analysis appeared re-
cently in Sameshima and Baccala (1999).
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