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This paper revicwes the recently proposed  method of

dircered colicrence and the related concepr of Granger

causality testing which joindly alloze the  divection of

informarion flote berzeeen mudtiple brain structures 1o be
deduced 1 a statistcally significant manner. Through
spectral factorisation using vector autoregressive models
and an allied feedback-based svstem-theoretic structire
parerpreration, these mcthods pernir tracking alterarions
m the connecuvity or the functioning brain of active
anunals, thercby opening a new ser of possibilitics Jor
newral signal analvsis. Ilustrative examples are pro-
vided using signals from the cortex and hippocampies
of both sleeping and active rats where noticeable shifts
i the divection of intormarion flote take place according
to steep state and dire 1o the influence of external stini-
el
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1. Introduction

For a long tme. anatomical (i.e. structural) data
obtained from animal dissection remained the only
source of information on how brain areas inter-
relate. In the last six decades, actual phvsiological
functional data became available through the analy-
sis of neuroclectric signals collected from living
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animals. By far, the most popular signal analysis
tools in brain research today are variants of spec-
trum-based correlation/coherence function analysis
[1-4] whereby the relationships between the simul-
taneous neural activity of distinct brain areas, rep-
resented by time series x(z) and v(r), are probed
via statistical tests over hyvpothetical linear signal
mappings T (filters)

Y& = T o) (1)

The adequacy of this model is usually asserted by
means of the classical coherence function

S
VS.DS.(0)

where S.(f) and S.(f) are the power spectral den-
sities at the input and at the output of 7T, respect-
velv. and S, (/) is the corresponding cross-spectral
density. Since 7 is usually invertible,

x(0) = T () (3)

holds as well and its validity is also verifiable
through Eq. (2), whereby the choice of using x(£)
or v{r) as the model input is completely arbitrary.

Some developments in multivariate time series
analysis have opened a whole new perspective of
description through the concept of Granger caus-
alitv [3]. Born out of econometrics and named
after its proponent to distinguish it from other and
more general issues involving cause and effect in
philosophy [6] and in system theorv, this concept
enables us to draw a dynamical picture of the
functional interactions between structures in the
active brain.

By contrast with ordinarv coherence analvsis,
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Granger causality lacks symmetry with respect to
swaps between x(z) and y(r). This feature turns
out to be essential in pointing the direction of
information flow.

There are many possible definitions of Granger
causality [5-8]. Roughly speaking, x() Granger-
causes y(r) if substantial improvements occur in
predicting y(z) by also taking the past of x(¢) into
account. Also noteworthy for neural structure
characterisation is the intimate relationship between
this concept and the ‘issue’ of feedback detection
[91.

To a large extent the signal processing com-
munity, with the exception of applied econo-
metricians, remains largely unaware of Granger
causality and its potential uses. For this reason,
Section 2 contains a brief review of the concept
and elaborates some of its consequences together
with methods of inference for its existence. Section
3 is devoted to the consideration of applications in
neurobiology; this is followed bv a discussion of
future perspectives and open issues in Section 4.
For ease of reference, a version of the Granger
causality test performed in the examples is
described in the Appendix.

2. Background

Even though the method applies to many simul-
taneous time series, for simplicity we consider just
two time series v and x which one may represent
by the filtering of unobservable time series ',
w, assumed to be zero mean i.i.d. sequences of
suitable statstics:

N o we| |H. H.||w.
['\.} - H |iu‘,\'] B l:H\'_\‘ H\’\} ':'z""\':, (4)

where if H, are linear operators, Eq. (4) is called
the prediction error filter representation of the vec-
tor process [v x}’ [10]. By using general oper-
ators, H,, extension to the case of N time series
becomes immediate. For instance, if H, stand for
matrices, x and y can be viewed themselves as
vector processes. Also for simplicity, operator
invertibility is henceforth assumed.

Obviously if H is triangular, it is easy to see that
w,. and @, affect x and y asymmetrically, leaving
more room for dynamical variability in one of the
series than in the other. To see this, let us express
v as a function of x,

v=H,Hix+ (H, - HH'H)w, (5
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where, if H,,= 0, x has no bearing on y as

y=H,w (6)
Despite this, we may still represent x as a function
of y:

x = Hy Hyly + (Ho - HWHZH) w, (D
or

x=H, H.'y+ H, w, (8)

To capture this asymmetry we may say that x
Granger-causes y if and only if H,, # 0 in Eq. (5).

This relation is directional in the sense that x
can ‘cause’ y, without v ‘causing’ x, provided that
H.=0 and H, #0. In other words, no infor-
mation flows from v to x or equivalently, given
signal propagation delays, as we argue subsequently
there is no feedback from v onto x. To realise this,
draw a block diagram representation corresponding
to Egs (3) and (7) [11], whose general form is

JAe s
x| G. 0 X
+ ’VG\i\' 0 £,
| 0 G.] e
which, upon elimination of the variables, gives

y- — I - G_\'.\' ! G_\:\‘ O [8}'}
X_J - G\'\' 1 0 G.\‘.\‘ 8.\'

(10)

or

H, H.]_ (1)
H, H,

(I-G.G.) 'G..
(1_ G\'_\'G\'.\') ) lG\'vay

which leads to G,, = 0 if H,, = 0 representing lack
of feedback from v to x. One may show also the
validity of the converse, making lack of feedback
synonymous with absence of Granger causality
[12], provided some mild regularity conditions that
guarantee invertibilitv of the operators involved
(like the lack of instantaneous signal propagation
in the feedback loop) [12,13].

Remark 1. Generalisation to N time series is
immediate. If Hj; is an element of the generalised
H~™' then

Gii = I:I;l

(I_ G_\',\'G.\'\') ! G\'_\'G.\‘.\'J
(I_ Gv\'\‘G\',\') -l G.\'.\‘

(12)

and



G, = —H,'H, (13)

Thus Granger causality analysis requires the a
priori definition of the time series prediction models
(usually parametric) to be used. Because of its
simplicity and low computational complexity, most
authors restrict themselves to linear models. This
choice is attractive because the spectral represen-
tation S(f) of [v x]” can be factored uniquely as

SK) (14)
_ [H\;\-(/‘) H_\-.\-(/‘)] 5 [H\;\'(f) H\~.\-(f)J”
H.) H.() H.) H.()

where

. _ [uf.‘. <r\._\}

- T Uy
is the cross-covariance matrix between : . and v,
and H.{/) represent minimum phase versions of
H, filters in Eq. (4) [12,13], affording practical
Lomputatlonal means that generalise immediately
to \'>

A partlcularl\ convenient way to compute H.(H

1s through vector autoregressive (VAR) model fit-
ting of the form

YO o, a0 e
= A’ -+ =
{mJ — LWﬂ e (1%
where the
z = [dn(l) dl:(’)J
EENORTING:
are matrices  of  constant  coefficients. leading

directly to Eq. (4) by using the s-transform in

Eq. 115} and rewriting it as

; I 1
= (I - EA,: ’)

-1

H(z), (16)

12t

_ [ H..() H_\.\,(/)J
H.0) H.()

Remark 2. There are several estimators for A, and
criteria for the optimal model order p selection
(14-17]. In the illustrations that follow in Section
3, the Nutall-Strand algorithm was used in the
computations together with the AIC (Akaike infor-
mation criterion) for choice of optimal model
order [14].

Remark 3. For N time series the feedback represen-
tation Is easv [0 express in terms of ,
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A=) = éa,,-(k): k a7
as -

Gila) = | _ ,[4 G (18)
and, for / # j,

Gi(=) = | jﬁ;)@) (19)

From these results, lack of causality from j to ¢
can be measured by either one of three conditions:

G,(2) = Hy(s) = A;(z) = 0 (20)

The testability of the condition u,(k) = 0 leads
directly to a test for Granger causality. Concisely,
lack of Granger causalitv from j to / cannot be
rejected if a suitably weighted linear combination
of a,(k) is significantly different from zero as meas-
ured by a x° distribution whose number of degrees
of freedom equal the number of linear constraints
a;{k) = 0 [7]. The weights over a,(k) involve the
covariance matrices of the time series and of their
prediction errors. This type of test is not only
convenient in its matrix formulation (sce Appendix)
but also has superior performance among many
other possible test alternatives [18].

Remark 4. In an
Granger causality [8],
expressed as

alternative formalisation of
the operator G.. must be

Guls) = Yg.(i)s
r
to ensure exploratory inference of the exclusive
effect of the past of x(r) on v(r). This imposes
lack of instantaneous feedback between time series
which is a precondition for the validity of Eq. (14)
(12,13]. Thus, the factors H; which depend on G,
only display information about dependencies of one
series on the past of the other series. As a matter
of fact, dependency, mainly correlation, of the
present of a time series on the present of another
time series can be investigated using S, where
inability to statistically reject o, = 0 indicates the
possibility for substantial improvement in the pre-
diction of v(r) by considering the present of x() in
addition to its past. Whenever 0. = 0, it is usual
to speak of iustantaneous causalirv between the time
series (7]. This type of causality is, alas, symmetric
(like classical coherence, Eq. (2)) because O = O
and may indicate the presence of external signal
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sources influencing x(z) and () simultaneously.
Further modelling to explain ., = 0 in terms of
additional noise sources requires additional ad /ioc
assumptions that violate the uniqueness of the spec-
tral representation (Eq. (14)) as in [19].

Despite the ability to probe for Granger causality
directly, some researchers have considered the use
of an alternative frequency domain measure of
causality called the directed colicrence (a terminology
due to [19]) from series j to series 7 and definable
in a form generalisable to .\ time series as [11]

H
v.(H = UV’?(%) (21)
where
N
S =2 GH,W" (22)

is the power spectral density of the ith series so
that y.(/)i* represents the fraction of the power in
the ith series due to the past ot the jth series.
Hence follow

0= y,(NI=1 (23)

and
.

N v

i

.2=1

(24

If. tor instance, Eq. (21) provides an interesting
frequency-dependent picture of signal How. its
asymptotic statistical properties remain theoretically
unknown with precision and only some extensive
Monte Carlo simulations have provided a practical
limit of v;(HI* < 0.1 as claimed evidence tfor lack
of causality at a given frequency {11].

Remark 5. For the bivariate case, y,(f) is closely
related to a causality test proposed by Geweke [20]
that is essentially equivalent to the one considered
previously and whose alternative statistic F_,- can
be decomposed in the frequency domain as

=T

. 1
F~—Y = 5n ff\-_,-(A)ciA (25)
where one may show that
&+ y W = 1 (26)

Remark 6. The so-called method of directed trans-
fer function (DTF) [21,22] differs from the above
formulation solely by using o, = 1 in Egs (21) and

13

(22), which precludes interpretation of the resulting
quantity as in terms of signal power fractions.

In neurobiology, knowledge of signal frequency
distributions is often physiologically significant (in
identifving «-rhythms for instance) so that testing
for causality by checking a,(k) = 0 together with
plotting |v,(|* provide complementary information,
one with regard to causality significance and the
other with regard to frequency distribution. Thus
whenever Granger causalitv cannot be dispelled,
lv;(N]* provides information about the relative
importance of the frequencies involved in the
phenomenon. Qur signal processing protocols are
illustrated in the next section.

3. Methods and lllustrations

To illustrate the use of these ideas and their sig-
nificance for neurobiology, we selected two samples
of multi-channel traces of local field potentials
recorded from cortical and subcortical brain struc-
tures of rats in sleep and in wakefulness via chron-
ically implanted bipolar electrodes (Figs 1 and 3).

Figure 1 presents 60s traces acquired during
desynchronised sleep, in many ways equivalent to
human REM sleep, in which the rat presented
rhythmic oscillations of brain electrical activity
around 8 Hz in the hippocampal fields CAl and
CA3, and two cortical Krieg's areas, A10 and A3
[23]. The muscular electrical activities related to
rostrum and eve movements were also simul-
taneously recorded. In analogy to human sleep, it
is believed that other species, including rats, also
experience dreaming during desynchronised sleep,
which can be evidenced by the phasic muscle
activity of rostrum and eve movements that charac-
terise a dreaming episode. In Fig. 1, four such
episodes are present, starting at approximately 5,
15, 28 and 37 s; they are accompanied or preceded
by a slight transient increase in the oscillatory fre-
quency. This fluctuation of oscillatory frequency
with such episodes can be appreciated by looking at

" the peak of classical coherence function in Fig. 2c.

To investigate the causal relationships between
these regions, VAR models were fitted to 2's win-
dows with 50% overlapping among adjacent seg-
ments; this choice has being made to reduce the
effect of signal nonstationarity. The resulting time-
frequency evolution for vy s .ca3(f) (high in the
vicinity of 8 Hz) and vyisscai(f) is illustrated via
grev-scale plots of Figs 2(a) and 2(b). Together
these results suggest a directionality in information
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Fig. 1. Local potential field recordings sampled at 256 Hz of a sieeping rat's hippocampal areas CA1 and CA3 and cortical areas A3
and A10. together with the simuitaneous electromyograms from rostrum and eye muscles.

Directed coherence from CA3 to CA1

A
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Fig. 2. Comparison of the time—frequency evolution of the directed coherences (a) and (b) between CA1 and CA3 from Fig. 1 with the
corresponding classical coherence (¢). Figure 2d displays the corresponding resuits of the Granger causality test in terms of the lower
probability tail 1-« of the value of the statistic A, (see Appendix) for each 2 signal segment used in the computations through joint

VAR modelling of all. N=4. brain signals in Fig. 1. The symbol @ represents the result of the effect of CA3 on CA1. while C stands
for the opposite direction.
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flow from CA3 to CAl that is confirmed in
Fig. 2(d) which displays the temporal evolution of
the level of significance (1 — «) of the Granger
causality test statistic A.. (see Appendix). It is inter-
esting to note that CA3’s influence over CAl is
easy to explain on the basis of known direct neu-
roanatomical projections, whereas signal bidirec-
tionalitv may be explained by long-loop feedback
involving cortex and medial septum and by more
recently described diffuse connection from CAl to
CA3, which deserves further study of its functional
significance (for more detail about the hippocampus
see [24]).

In the Granger causality plot, Fig. 2(d), CA3
is causal onto CAl (e), whenever (1—a)>0.95.
Accordingly we observe episodes of information
directionality switches that are related to rostrum
movements. This fact is not evident through the
inspection of directed coherence plots (Figs 2a and
2(b)) because directed coherence from CA3 to
CAl, Fig. 2(a), is much stronger and evident than
from CAl to CA3, Fig. 2(b).

In rodents, rhythmic neuroelectric activity in this
same frequency range is also observed during active
exploratory behaviour. Figure 3 shows a recording
from cortex (A3, Al0), hippocampus (CAl), and
dorsal raphe (DR) during exploratory behaviour.
In this case, recording started while the rat was
actively exploring a lighted cage; at about mid-
record the rat gradually ceased exploring, as
attested bv the decrease in head movement and a
change in the pattern of local field potentials
(Fig. 3). Exploratory activity resumed around 52s
due to sudden room darkening when the lights were
switched off. Using the same analyvsis parameters («

head

A10
A3 R R
CA1

DR

ot v o e o

- | - ’ o { l%%ﬂ+%" li J o
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and segmentation) as before one can see predomi-
nant information flow from CAl to A3 in both
exploratory periods. The period of inactivity was
characterised by large fluctuations in the resulting
directions of information flow using Granger’s test
(Fig. 4(d)) as opposed to qualitative conclusions
one might draw from directed coherence alone
where CAl seems to have a sustained effect on
A3 (Fig. 4(a)).

4. Discussion and Future Perspectives

Electrophysiologicaily one can distinguish four basic
tvpes of neural signals: (a) local depolarising and
hyperpolarising synaptic potentials, (b) sequences
of action potentials (spikes) generated by single
neuron firing; (é) local field potentials recorded
within some brain structure and which represent
averages of the firing of many neurons; and (d) the
EEG (electroencephalogram) the resulting residual
electric field on the scalp.

In the last few vears, mostly in connection with
EEG processing, we have seen the growth of pro-
ponents of ‘modified’ coherence methods [21,22,
25-27] much like the one reviewed above. At least
in neurobiological circles, in contrast to what hap-
pens in econometrics, very little has vet appeared
in the specialised literature regarding objective caus-
ality tests. This, together with the lack of wide-
spread signal processing expertise among most neu-
roscientists, and perhaps also due to the possibility
of using radical invasive approaches (neural tissue
lesion), has contributed to the restricted popularity

ol

0 10 20

30 40 50 60

Time (s)

Fig. 3. Local potential field recordings sampled at 256 Hz of an active rat's hippocampal area CA1 and cortical areas A3 and A10 plus
the dorsal raphe (DR) together with the simultaneous electromyograms from neck muscles (head movements).
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Fig. 4. Comparison of the time-~frequency evolution of the directed coherences (a) and (b) between CA1 and A3 from Fig. 3 with the
corresponding classical coherence (c). Figure 2d displays the corresponding resuits of the Granger causality test in terms of the lower
probability tail 1-« of the value of the statistic \. (see Appendix) for each 2's signal segment used in the computations through joint

VAR modelling of alt (N =4) brain signais in Fig. 3. The symbol @ represents the result of the effect of CA1 on A3. while

the opposite direction.

ot the present methodology despite its clear and
superior benefits over classical coherence analvsis.
It is to fill this gap that we propose the use of the
Granger causality test in conjunction with directed
coherence. as the latter method provides invaluable
visual cues to many issues of interest to neurobiolo-
gists. such as frequency of oscillation and so on.
Furthermore the Granger causality test. as
described here, allows working with multivariate
signal traces of single measurements rather than
with the ensemble measurements required for stat-
istical inference through variants of directed coher-
ence alone [26].

One of the biggest challenges in neurobiological
signal processing todav is in the area of action
potential processing. Advanced data acquisition sys-
tems [28, 29] are now able to record an ever-
growing number of single neurons simultaneously
(tens of channels) with few existing methods to aid
the researcher in combing through for regularities
in the resulting overwhelming mass of data. Use of

stands for

directed coherence seems promising in this kind of
analysis [8], especially if coupled with rigourous
causality tests.

A number of challenges remain. In experimental
setups involving behaving animals neural signals are
rather nonstationary, which can make estimation of
Eq. (15) difficult, especially with regard to reliable
model order p estimates. Also because the neuron,
the very unit of brain processing, is a nonlinear
element, questions arise as to the generalisation of
these ideas to nonlinear prediction models. A
further matter of concern to the signal processing
community is the issue of faster directed coherence
and Granger test calculations.

In summary, joining the frequency information
from the directed coherence approach and over-
coming its, main deficiency regarding objective caus-
ality inference through specific tests, the present
approach offers a live picture of how brain areas
interact that emphasises a shift from structure co-
activation - the only picture that conventional
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coherence analysis can provide - to the new
approach of looking into the mutual effect of the
activation of information pathwavs in the func-
tioning brain.
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Appendix. Granger Causality Test Details

For ease of reference, we restate the Granger caus-
ality test from j to { described in [7]. The constraint
imposed by a,(k) = 0 may be summarised as the
null hypothesis:
H,:Ca=0 (AD
where a is the vector produced by column stacking

A, ... A (A2)
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and C is a matrix with zero entries except for the
factors multiplying a,(k). Let ¢ be the number of
equations represented by Eq. (Al).

The test proceeds by rejecting H, (absence of
causality) if the statistic

A. = aC"(C(G™'®2)C") "'Ca (A3)

exceeds the threshold xZ. (¢ degrees of freedom)
at a significance level a, where

L.A. Baccala et al.

G =2 ykyk)" (A%)
ke

with vk = [y(H".y(»)1" for y(k) =
[vi(R)...v\(£)]7, so that k spans all available vector
data samples and where ® is the Kronecker matrix
product and X a consistent estimator of X. For
easier visualisation, Figs 2 and 4 contain the plots
of 1—a« rather than a plot of the value of A, scaled
by xa.-





