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Abstract

This paper illustrates the use of the recently introduced method of partial directed coherence in approaching how interactions
among neural structures change over short time spans that characterize well defined behavioral states. Central to the method is
its use of multivariate time series modelling in conjunction with the concept of Granger causality. Simulated neural network
models were used to illustrate the technique’s power and limitations when dealing with neural spiking data. This was followed by
the analysis of multi-unit activity data illustrating dynamical change in the interaction of thalamo-cortical structures in a behaving
rat. © 1999 Elsevier Science B.V. All rights reserved.

Keywords: Partial directed coherence; Granger causality; Structural inference; Feedback detection; Spike train analysis; Multivariate autoregressive
models

www.elsevier.com/locate/jneumeth

1. Introduction

Evidence is mounting that challenges the traditional
view of the brain as a set of segregated tissues with
static specialized functions. While neural plastic
changes in adult brains over days or weeks are well
documented (Merzenich et al., 1981; Recanzone et al.,
1992; Donoghue, 1995; Wang et al., 1995; Nudo et al.,
1997), the neural dynamics involved in the genesis of
animal behavior over short time scales is only now
being more deeply investigated (Calford and Tweedale,
1991; Nicolelis et al., 1993; Faggin et al., 1997;
Schreiner et al., 1997). It is thought that these dynamics
stems from the parallel and synchronized activity of
many neurons and that its understanding requires mon-
itoring large ensembles of neuronal populations simul-
taneously (Eichenbaum and Davis, 1998; Nicolelis,
1998).

To organize specific behavior neural structures may
interact directly or indirectly and their effective func-
tional instantaneous connection may possibly be

switching and varying in strength over short time spans.
In describing these functional interactions, most re-
searchers select pairs of functional elements and subject
their activity to cross-correlation and spectral (coher-
ence) analysis (Gochin et al., 1991; Duckrow and
Spencer, 1992; Bressler et al., 1993; Konig et al., 1995).
Though intuitive and powerful, reliable use of these
tools requires neural data segments longer than the
time scales characterizing stationary animal behavior
thus producing, at best, only greatly averaged estimates
with poor temporal resolution (Perkel et al., 1967;
Aertsen and Gerstein, 1985; Eggermont, 1990). In addi-
tion, pairwise correlations and spectral coherence only
examine if some link exists between two neural elements
and do not address whether one structure drives the
other or if there is feedback between those structures.

This latter limitation for bivariate time series was
overcome by Saito and Harashima’s (Saito and Ha-
rashima, 1981) method of directed coherence (Schnider
et al., 1989; Baccalá and Sameshima, 1998; Baccalá et
al., 1998), which represents a factorization of spectral
coherence (via time series modelling) (Baccalá and
Sameshima, 1999). Perhaps more importantly, this tech-
nique relies on the key concept of Granger causality
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(Granger, 1969) between time series (named after its
proponent to distinguish it from other causality con-
cepts in other fields): an obser6ed time series x(n)
Granger-causes another series y(n), if knowledge of
x(n)’s past significantly impro6es prediction of y(n); this

relation between time series is not reciprocal, i.e. x(n)
may Granger-cause y(n) without y(n) necessarily
Granger-causing x(n). This lack of reciprocity permits
gauging the direction of information flow between
structures and allows probing for feedback which exists

Fig. 1. (a) An example of 6 s of spike time-stamps and kernel reconstructed signals from neurons A and B under scenario I of Example 1. (b)
The respective ISI histograms showing distinct average firing rates that is also reflected in the oscillatory power spectra SA( f ) and SB( f ) in (d).
(c) Cross-correlation histogram (5 ms binwidth) between neurons A (45 spikes) and B (65 spikes) shows a significant peak at 10 ms lag reflecting
the excitatory connection from A to B. The horizontal dashed-line is \99% confidence limits supposing Poisson processes. (d) The mutual
interneuronal influence is shown by the partial directed coherences pBA( f ) and pAB( f ) (shaded areas). Significant causality was observed for both
connections as pBA( f ) and pAB( f ) rise above the significance (dotted line) adopted for the SCC criterion (see Remark 2). Note that pBA( f ) and
pAB( f ) achieve significant levels at distinct frequencies. The observed presence of causality from A to B and from B to A is in accord with existing
feedback underlying scenario I, that can not be inferred from the cross-correlogram (c). The solid lines on the pij( f ) graphs depict the existing
classical coherence (CAB( f )=CBA( f )) between A and B.
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Fig. 2. Six seconds of simulation results for scenario II of Example 1
(unidirectional connection from A to B, with 59 and 69 spikes,
respectively) of (a) the cross-correlation histogram (5 ms binwidth)
showing that A leads B by 5 ms, and (b) where only the partial
directed coherence pBA( f ) is above the dotted significance line for
SCC (Remark 2) in accord with the unidirectional character of the
connection from A to B. The shaded area of pBA( f ) has the classical
coherence CBA( f ) (=CAB( f )) as its envelope (solid line); in other
words, in this case all of existent synchronous activity is due to
neuron A.

preprocessed the neural spiking data (labelled via their
time stamps tk) prior to analysis, by convolving the
spike impulse trains

si(t)=%
k

d(t− tk)

with the kernel

h(t)=
sin (pt/Tw)

pt/Tw

(2.1)

and by sampling the result at a rate 1/Ts, leading to
discrete time signals xi(n), 15 i5N, after extraction of
their means (French and Holden, 1971). To describe the
mutual relations between xi(n) we employed a multi-
variate (vector) autoregressive model (Priestley, 1981;
Lutkepohl, 1993):

Fig. 3. (a) The spike cross-correlogram (binwidth=5 ms) using 6 s of
a simulation realization (with 58 and 59 spikes) under scenario III
(Example 1), with a significant peak at 10 ms lag. In (b), the partial
directed coherences pBA( f ) and pAB( f ) stay below the dotted signifi-
cance line above for SCC (Remark 2) in agreement with the uncon-
nected nature of the pair of neurons. The classical coherences
CAB( f )=CBA( f ) between A and B are also shown (solid line) on the
same graphs. Note that the cross-correlogram (a) for 6 s segment
falsely suggests the presence of connection.

whenever one can show that x(n) Granger-causes y(n),
and y(n) simultaneously Granger-causes x(n).

In a recent paper (Baccalá et al., 1998), we discussed
the use of Granger causality and directed coherence in
the analysis of multivariate measurements of local field
potentials, and provided a specific test of the presence
of causal relationships. In this paper, we investigate the
performance of the recently introduced frequency do-
main method of partial directed coherence (Baccalá and
Sameshima, 1999) to the analysis of dynamic changes in
the connections among neural structures in a spike
train data context. For comparisons, we also included
the results of a Granger causality test (GCT) discussed
in Baccalá et al. (1998).

2. Causality determination and multivariate
autoregressive models

To use multivariate time series techniques we first
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Fig. 4. Percentage of false structural inferences of Example 1 using the Granger causality test (a) and the spectral causality criterion (b). For
scenario I, results are broken into false inferences respectively for connections from A to B (B�A) and from B to A (A�B). For scenario II,
only the results of its existing connection from A to B are shown together with the results for scenario III that lacks connections. Better
performance arises for actually present connections with superior performance for the spectral criterion. For absent connections (scenario III), the
Granger test structure inference failure remained at 20% irrespective of signal duration, while the spectral criterion failure rate, though higher,
decreased as signal duration increased. For existing connections, inference errors around 1% for 1–2 s long segment were attained for the spectral
criterion illustrating its high temporal resolution.
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with wi(n) standing for white uncorrelated innovations
noises. To determine the prediction coefficient matrices
Ar for each lag r, we employed standard fast maximum
entropy methods, and to choose the appropriate order
of the model p we used Akaike’s AIC criterion (Marple
Jr, 1987). The time domain representation of Eq. (2.2)
is easily translated into the frequency domain by comput-
ing the power spectral density matrix (Priestley, 1981)

S( f)=H( f)SH( f)H , (2.3)

where S is a covariance matrix of wi(n),

H( f)=A( −1( f)= (I−A( f))−1 (2.4)

and A( f)=�p
r=1 Arz−r�z=e− j 2pf. Let aij(r) be an element

of Ar. Also let āij( f ) be A( ’s i, j-th element, i.e. the i-th
component of the j-th column āj( f ) of A( .

Partial directed coherence was introduced recently as
a modification/generalization (Baccalá and Sameshima,
1999) of directed coherence (Saito and Harashima, 1981;
Schnider et al., 1989; Baccalá and Sameshima, 1998;
Baccalá et al., 1998) and its variant — the method of
‘directed transfer function ’ (Kaminski and Blinowska,
1991). The main reason for introducing partial directed

coherence is that it provides a clearer and more immedi-
ate frequency domain connectivity picture of Granger
causality than that due to directed coherence (Baccalá
and Sameshima, 1999), especially for the simultaneous
analysis of more than two time series (N\2).

Fig. 5. Percentage of false structural inferences of independent simul-
taneously processed Poisson processes (N=2, 3 and 4) for increasing
segment lengths using the Granger causality test (a) and the spectral
causality criterion (b). The kernel convolution parameters used were
Tw=50 ms and 1/Ts=200 Hz.
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Fig. 6. (a) Sample of inter-spike interval histograms for two neurons from each layer (40 s of simulation) of Example 2 where layer B and C
neurons show bursting ISI patterns and where (b) cross-correlograms using B1 neuron as reference (binwidth=1 ms) point to a propagation
latency of about 2 ms between layers.

Testing for Granger causality from series j to i, i.e.
probing for the improvements in predicting series i from
past observations of series j actually depends on asserting
whether aij(r)=0 for all lags (Lutkepohl, 1993; Baccalá
et al., 1998). The frequency domain equivalent of this
concept is āij( f )=0 for all f. Thus. after suitable
normalization, discussed elsewhere (Baccalá and
Sameshima, 1999), one possible definition for ‘partial
directed coherence ’ is

pij( f)=
D āij( f)


āj( f)Hāj( f)
(2.5)

Remark 1: This name, ‘partial directed coherence ’,
follows from another possible normalization (Baccalá and
Sameshima, 1999) of āij( f ) whereby the resulting pij( f )
is a natural factor term in the partial coherence kij( f )
between two time series (Bendat and Piersol, 1986). By
itself kij( f ) describes the linear pairwise time series
relatedness (without reference to the direction of informa-
tionflow)afterdiscounting thecommoneffectdue toother
simultaneously observed series.

Remark 2: When N=2, the method of ‘partial directed
coherence ’leadsexactlytothesameestimatorasthemethod
of ‘directed transfer function ’ (Kaminski and Blinowska,
1991). This identity authorizes the use of an empirical
spectral causality criterion (SCC) suggested by Schnider
et al. (1989) whereby connection from j to i is significant
if �pij( f )�\0.1, for some f. Since multivariate series
decomposition into partial directed coherences effectively
separates pairwise interactions by subtracting the effect
of other series, we tentatively adopted SCC also for N\2.

Remark 3: The main advantage of partial directed
coherence is that Granger causality may be assessed over
specific frequency ranges as opposed to GCT which
considers the spectrum as a whole.

Fig. 7. Three-by-three matrix subplot layout containing the power
spectral densities, Si( f ), of simultaneously analyzed neurons along
the main diagonal, one from each layer of Example 2; the respective
partial directed coherences lie on the off-diagonal subplots, where
only pBA( f ) and pCB( f ) (shaded) are significantly larger than 0.1
(dotted line) in accord with the simulated layer structure (A�B�C).
Classical coherence plots (solid line) are significant throughout the
network. This further illustrates Cij( f )’s inability to provide detailed
structural information.
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Fig. 8. Time-frequency representation of causality obtained by collating coherence estimates (in 10 level grey scale) for adjacent 8 s long segments
(50% overlapping) with four plots for each time series pair showing that (a) pAB( f )#0 as opposed to persistently significant pBA( f ) as confirmed
by the Granger causality test (a plot of the 1−a=95% confidence level) where information flows from A to B (�) with some false positive
connectivity results in the opposite direction (	); (b) lack of direct connection between A and C (pAC( f )#pCA( f )#0) with mostly wrong
Granger test results and (c) pBC( f )#0 and significant pCB( f ) with the Granger test behaving as in (a). Together these figures confirm the overall
structure A�B�C according the spectral criterion (see Remark 2).
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Fig. 9. Perispike raster plots and cross-correlograms (10 ms
binwidth), using cortical (CTX) activity as reference, of a simulta-
neous multi-unit thalamo-cortical recording of rhythmic spike train
bursting at 7.4 Hz over 20 s. Note the nonstationary frequency
fluctuations possibly reflecting changes in the animal’s internal state.
The cross-correlograms reveal that on average cortical activity (CTX)
leads thalamic bursting (VPM1 and VPM2) suggesting predominant
cortical driving of thalamic neurons.

their existing interaction through a linear operator in
that frequency range.

3. Illustrative examples

3.1. Example 1: Two neuron integrate-and-fire network

To illustrate causality analysis in a neural spiking
context, we simulated a simple two neuron integrate-
and-fire network. Each neuron was implemented by a
discrete time summation of its past input leading to an
internal potential (Vm) that was reset to zero and
produced a spike of unit amplitude in normalized units
whenever a threshold value (Vth) was reached and the
neuron was outside its refractory period (R). In the
simulations, independent white uniform noise between
0 and 1 at the inputs of each neuron simulated a
stochastic background. These neurons interacted by
adding their weighted (ki) output after some propaga-
tion delay to the respective input of the other neuron.
Using identical neurons (Vth=10 in normalized units
and R=50 ms) we obtained oscillatory behavior
around 10 Hz when neurons were unconnected.

The resulting simulations (90 Monte Carlo experi-
ments each lasting 60 s) of spike stamps for both
neurons were processed via Eq. (2.1) using Tw=5 ms
and 1/Ts=100 Hz before modelling via Eq. (2.2)
wherefrom we computed the partial directed coherence
to compare a test for Granger causality with the spec-
tral causality criterion in the scenarios of:
1. bi-directional connectivity, one excitatory connec-

tion from neuron A to neuron B and a reverse
inhibitory connection of identical strength from B to
A, (i.e. kA= −kB=2);

2. unidirectional connection from A to B (kA=2,
kB=0), and

3. absent connection (kA=0, kB=0).
A 6 s segment of spike time stamps and the corre-

sponding xA(n) and xB(n) for scenario I are shown in
Fig. 1a followed by inter-spike interval (ISI) histograms
(Fig. 1b) and spike cross-correlation (Fig. 1c). Partial
directed coherence analysis (shaded areas in Fig. 1d)
confirmed the existing bi-directional influence. Note
how driving due to different neurons predominated at
different frequencies. This kind of frequency dependent
feedback from B to A was impossible to infer either
from spike cross-correlation or from the existing fairly
high ordinary coherence CAB( f )=CBA( f ). In fact,
high CAB( f ) meant that there was significant syn-
chronous co-activation without additional information
as to the which neuron was the predominant driving
source at which frequency.

In an example of a 6 s long segment for scenario II,
the cross-correlation (Fig. 2a) was contrasted to the
partial directed coherence (Fig. 2b). The small value of

For comparisons, we used classical coherence (Ben-
dat and Piersol, 1986) for series pairs i and j, which
were computed via

Cij( f)=
�S. xixj

( f )�2
S. xi

( f)S. xj
( f)

(2.6)

where S. xi
( f) and S. xixj

( f) stand for estimates of the
series auto- and cross-spectrum obtained through Eq.
(2.3). High Cij( f ) values point to the simultaneous
activation (degree of relative synchrony) between areas
i and j at frequency f and to the adequacy of describing
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pAB( f ) correctly confirmed absence of feedback from B
to A. Such deduction was impossible using cross-
correlation.

The cross-correlation (Fig. 3a) for an example of a 6
second long segment of scenario III incorrectly led to
the inference of an existing connection. Correct infer-
ence confirming lack of connection was achieved using
partial directed coherence (Fig. 3b).

The percentage of false structural inferences for GCT
(Fig. 4a) and SCC (Fig. 4b) as a function of segment
length showed SCC’s superiority when connections
were present: achieving the highest temporal resolution
for 1–2% failure for segments as short as 1–2 s. For
unconnected neurons both tests produced high failure
rates, 20% for GCT, irrespective of segment length, and
high, but declining, SCC failure for increasing segment
length.

To further evaluate SCC’s failure rate for identical
unconnected neurons, we investigated test performance
by simultaneously analyzing 2, 3 and 4 independent
Poisson processes firing around 10 Hz (45 realizations
each lasting 120 s) (Fig. 5). In this case, SCC’s perfor-
mance was superior to GCT’s which behaved as before.
SCC detected lack of connection correctly for as few as
80 observed spikes (8 s segments) in most cases.

3.2. Example 2: Multi-layered multi-neuronal model
simulation

To investigate causality that was due to neuronal
bursting behavior, we simulated the interaction of
many leaky integrate-and-fire neurons disposed in three
layers using the cortical cell parameters from Wehmeier
et al. (1989).

The model layers (with unidirectional feedforward
interconnection among them: A�B�C) contained 50
neuronal elements each, all identical but for randomly
chosen thresholds between −45 to −35 mV. Each
neuron in A was connected to all neurons in B, each of
whose neurons projected to all neurons in C; with 10%
inhibitory synaptic inputs driven by Poisson processes
with l=0.01. The propagation delay between layers
was 2 ms. We employed backward-Euler integration
with Tstep=0.0001 s; and discarded the initial transient
to avoid nonstationarity in the analysis. Within layer B
or C, each neuronal element received exactly the same
input stimulus set from the previous layer; while a
random Poisson process acted on layer A neurons.

Prior to analysis, the spike trains resulting from the
simulation were convolved with Eq. (2.1) using Tw=
50 ms and 1/Ts=1 kHz. Sample ISI histograms for two
neurons from each layer are displayed in Fig. 6a (40 s
of simulation); layer B and C neurons show bursting
ISI histograms patterns. Neurons in A fired between
24.9 and 29.5 Hz, while B and C layer neurons aver-
aged respectively 24.2 and 20.9 Hz firing. Cross-correlo-

grams between A, B and C, shown in Fig. 6b, pointed
to a propagation latency of approximately 2 ms be-
tween layers.

Using 8 seconds of three neurons, one of each layer,
we displayed the series’ power spectra along the main
diagonal of the 3×3 subplot result matrix layout of
Fig. 7; the off-diagonal layout plots exhibit partial
directed coherence (shaded) and classical coherence
(solid line). The direct influence of neuron A over
neuron B via their partial directed coherences pBA( f )
was significant as was that from B to C (pCB( f )) in
contrast to all other directional pairs that showed negli-
gible partial directed coherence confirming unequivo-
cally the information flow diagram: A�B�C.

To follow changes in the information flow pattern we
produced a time-frequency representation by collating
coherence estimates (gray scale) for adjacent 8 s long
segments (with 50% overlapping among adjacent seg-
ments) in Fig. 8. For each pair of time series, four plots
were displayed: the two partial directed coherences; the
classical coherence; and the Granger causality test (see
the Appendix of Baccalá et al. (1998)). Fig. 8a shows
how neurons in A and B interact: a) pAB( f )#0
throughout, as opposed to persistently significant
�pBA( f )�\0.1; b) classical coherence reflected the corre-
lated activity of both neurons; c) the Granger causality
test confirmed the connectivity from A to B (o), but
yielded some false positive connectivity from B to A in
accord with the results in Fig. 4 and 5. The lack of
direct connection between A and C was reflected in the
partial directed coherence results of Fig. 8b though
GCT incorrectly signalled the existence of this connec-
tion as being direct. The results in Fig. 8c, for B and C,
were qualitatively similar to those in Fig. 8a.

3.3. Example 3: Analysis of measured spike sequences

Finally, we analyzed thalamo-cortical data of a rat
engaged in exploratory activity. Using a simultaneous
multi-unit recording without individual spike discrimi-
nation, multiple neuron spike trains with rhythmic
bursting around 7.4 Hz were studied. Perispike raster
plots (Fig. 9), using cortical (CTX) activity as reference,
showed that the oscillation frequency varied over a 20 s
span possibly due to non-stationary fluctuations in the
animal’s internal state. The accompanying cross-correl-
ogram histograms (the columnwise sum of spike occur-
rence in perispike raster plots) revealed (close to
time-lag zero) that, on average, cortical activity (CTX)
led thalamic bursting (VPM1 and VPM2), i.e. cortical
driving over thalamus was predominant in this behav-
ioral state.

After convolving the spike trains with Eq. (2.1) using
1/Ts=100 Hz and Tw=50 ms, causality analyses using
segments of 1 (Fig. 10a), 2 (Fig. 10b) and 4 s (Fig. 10c)
revealed consistent predominant flow of information
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Fig. 10. Time-frequency representation of causality using segments of 1 s (a), 2 s (b) and 4 s (c) revealed consistent and predominant flow of
information from cortex (CTX) to thalamus (VPM1) based on SCC (Remark 2). Throughout these time scales of analysis, use of the spectral
criterion shows evidence of connection in the reverse direction (feedback) around the middle of the record where one can see light grey islets. This
evidence is corroborated by the Granger test results for (b) and (c) (plots of the 1−a=95% confidence level). Significant co-activation is apparent
from the classical coherence plots of Fig. 10a throughout the record. The episodes of feedback from VPM1 to CTX are characterized by a subtle
increase in the frequency which can be noted by inspecting the maximum of classical coherence in (a).
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from cortex (CTX) to thalamus (VPM1) over these
three time scales. In addition, consistent episodic func-
tional connectivity in the opposite direction (light grey
islets) was present in the middle of the record. Even
though this conclusion was based on the use of SCC,
which the previous examples showed to be the criterion
of choice for oscillatory spike train data, GCT’s results
agreed with SCC over the 2 and 4 s long time scales of
analysis. Furthermore, the feedback episodes coincided
with an increased frequency of co-activation apparent
from the classical coherence plot of Fig. 10a.

4. Conclusions

All of the available techniques that involve multivari-
ate time series modelling, whether they use Granger
causality explicitly (Baccalá et al., 1998; Baccalá and
Sameshima, 1999) or not (Saito and Harashima, 1981;
Franaszczuk et al., 1985; Wang and Takigawa, 1992;
Franaszczuk et al., 1994; Takigawa et al., 1996; Kamin-
ski et al., 1997), were originally developed for time
sampled ‘analog’ signal processing — EEG and local
field potentials. This paper’s chief aim was to investi-
gate whether one could use the best available multivari-
ate time series modelling techniques directly for the
analysis of spike train data. In this investigation we
restricted our attention to rhythmic neuronal dynamic.

Examples 1 and 2 showed that partial directed coher-
ence goes a step beyond correlation and classical coher-
ence (which are also linear techniques) because of its
ability to expose the direction of information flow, and
because it highlights the presence of feedback between
two or more simultaneously analyzed neural structures.
In addition and perhaps more importantly, the method
of partial directed coherence is capable of achieving
high temporal resolution compared to correlative
techniques.

Though further rigorous structural inference evalua-
tion is required, the simulations of Examples 1 and 2
lend credence to the reality of the observed short-lived
and frequency altering feedback from thalamus to cor-
tex described in Example 3. Finally, within the dynamic
regime of oscillatory neural spiking, SCC’s performance
was superior to GCT’s and should be the criterion of
choice specially when the processes involved are oscilla-
tory and of the Poisson type.
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