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Abstract: Functional magnetic resonance imaging (fMRI) has become an important tool in Neuroscience
due to its noninvasive and high spatial resolution properties compared to other methods like PET or
EEG. Characterization of the neural connectivity has been the aim of several cognitive researches, as
the interactions among cortical areas lie at the heart of many brain dysfunctions and mental disorders.
Several methods like correlation analysis, structural equation modeling, and dynamic causal models
have been proposed to quantify connectivity strength. An important concept related to connectivity
modeling is Granger causality, which is one of the most popular definitions for the measure of direc-
tional dependence between time series. In this article, we propose the application of the partial directed
coherence (PDC) for the connectivity analysis of multisubject fMRI data using multivariate bootstrap.
PDC is a frequency domain counterpart of Granger causality and has become a very prominent tool in
EEG studies. The achieved frequency decomposition of connectivity is useful in separating interactions
from neural modules from those originating in scanner noise, breath, and heart beating. Real fMRI data-
set of six subjects executing a language processing protocol was used for the analysis of connectivity.
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INTRODUCTION

Functional magnetic resonance imaging (fMRI) has
become one of the most prominent techniques in Neuro-
science. It was first introduced by Ogawa [1990], who stud-
ied the properties of BOLD signal (blood oxygenation level

dependent), based on paramagnetic properties of deoxyhe-
moglobin (T2* weighted acquisition). Because of its noninva-
sive and high spatial resolution properties, the number of
studies based on fMRI has been growing considerably.
The main focus of most fMRI studies is the localization

of neural activation, for which identification and modeling
methods are well established [Frackowiak et al., 1997].
Actually, most of them rely on general linear model
(GLM), measuring the association of observed BOLD sig-
nal and an expected haemodynamic response function
(HRF). By contrast, connectivity modeling and identifica-
tion remain open questions. Several studies [Biswal et al.
1995; Cordes et al. 2000; Peltier and Noll, 2001] are based
on BOLD correlation analysis (BCA), which can be inter-
preted as a measure of concurrence between the signals of
two brain areas. Despite being useful as an exploratory
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tool, BCA is unsuited for connectivity characterization
because it is based solely on the bivariate analysis of rela-
tionships and the identified connections are undirected,
i.e., BCA neither provides information about the multivari-
ate influences among time series nor about the direction of
information flow.
Advanced statistical approaches have been proposed to

overcome these weaknesses. The most popular techniques
to address connectivity in fMRI are: the structural equation
modeling (SEM), proposed for fMRI data analysis by
McIntosh [1998] and dynamic causal models (DCM), intro-
duced by Friston et al. [2003]. However, both techniques
rely on a priori specification of the connectivity linkages,
i.e., the structural graph must be previously known. These
approaches are suited to test the statistical significance of
the covariance structure between neural areas with known
effective connectivity. For this reason, they cannot be con-
sidered exploratory tools, but rather just confirmatory
methods for some hypothesis.
Recently, Granger causality identification using vector

autoregressive (VAR) models has been a useful tool for
understanding cortical interactions. Granger [1969] defined
causality in terms of predictability and temporal prece-
dence. This concept was first applied in econometrics to
identify temporal relationships among financial time series.
Granger causality identification using VAR methods can
be considered both an exploratory and also a modeling
tool. In contrast to SEM and DCM, VAR modeling does
not require any pre-specification or a priori knowledge
about the connectivity structure, even though a priori in-
formation can also be included in the model as constraints
in the parametric space. Furthermore, considering some
graph theoretical ideas, Eichler [2005] introduced connec-
tivity identification based on Granger causality and graphi-
cal modelling. Goebel et al. [2003], Roebroeck et al. [2005]
and Abler et al. [2006] introduced the Granger causality
mapping in the context of fMRI experiments. They also
showed the reproducibility and reliability of the connectiv-
ity identification via Granger causality for BOLD signals.
Valdes-Sosa et al. [2005] applied VAR models to fMRI
datasets considering estimation in cases of overparametri-
zation and sparse models using penalized regression. Con-
sidering the case of nonstationary signals, Sato et al.
[2006a, 2006b] introduced intervention VAR and time vary-
ing VAR models to infer the connectivity in fMRI datasets.
Frequency domain multivariate modelling is also the aim

of interest of many researchers, as Parseval’s relationship
allows decomposing signal variance into its frequency com-
ponents. BOLD signal variance is composed of unobserved
haemodynamic response, scanner noise, heart beating, habit-
uation effect, and other factors. Sun et al. [2004] suggested
the use of spectral coherence and partial coherence to attain
frequency domain connectivity identification in fMRI and
illustrated their application in motor experiments. Salvador
et al. [2005] introduced an approach based on partial coher-
ence named normalized partial mutual information, and
have shown that functional connectivity lay mainly in low

frequencies (0.0004, 0.1518 Hz). In spite of being a useful ex-
ploratory tool, like BCA, spectral coherence does not allow
inferring directionality in the connectivity structure.
In this article, we employ partial directed coherence

(PDC) to identify neuronal connectivity using fMRI data.
This approach does not require structural pre-specification
and is very well defined in multivariate cases. The viability
and usefulness of this method is illustrated through a lan-
guage-processing paradigm.

METHODS

Granger Causality

Granger [1969] defined the concept of causality by focus-
ing on the description of temporal relationships between
time series. The bases of the Granger causality concept are
the reduction in prediction error and the fact that the effect
cannot precede its cause. For two scalar time series xt and
yt, there is Granger causality from series xt to yt if the past
values of xt increase the forecast power of present and value
of yt. It formalizes the notion of amount of information flow
from the area of the signal xt to the area of yt. It is impor-
tant to remark that the Granger causality relationship is not
reciprocal, that is, existence of Granger causality from xt to
yt does not imply the existence of Granger causality from yt
to xt and vice-versa. Furthermore, Granger causality does
not imply physical and biological causality, but only predict-
ability improvement (functional connectivity).
VAR modeling is the most common approach used for

Granger causality identification. Let Yt a multidimensional
time series composed by k signals, i.e.

Yt ¼
y1t
y2t

..

.

ykt

2
6664

3
7775; t ¼ 1; 2; . . .T ð1Þ

where by the VAR model is defined as

Yt ¼ vþ
Xp
l¼1

AlYt�l þ et ð2Þ

and v is a vector of constants and et is a vector of random
disturbances. The matrices Al (l 5 1,. . .,p) are given by
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and the element a
ðlÞ
ij ði ¼ 1; :::; k; j ¼ 1; :::; kÞ is the causality

coefficient from the series yjt to the series yit. The vector of
innovations et has a covariance matrix given by
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R ¼

r2
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Note that assuming the expectation of et to be zero, the
prediction of Yt given all the information available until
the time (t 2 1) is given by

Ŷt ¼ vþ
Xp
l¼1

AlYt�l ð5Þ

Hence, considering the VAR model, yjt is said to
Granger-cause yit if the coefficient a

ðlÞ
ij is non zero for some

value of l. This can be interpreted as existence of informa-
tion flow from the brain area j to brain area i. In practice,
inferences about the connectivity structure can be achieved
by fitting a VAR model to the observed BOLD signal and
by testing the statistical significance of the ‘‘causality’’ coef-
ficients. Further description, discussion and estimation
algorithms can be found in Lütkepohl [1993].

Partial Directed Coherence

Although conceptually interesting, in its original form
Granger causality is a time domain concept, and does not
permit discerning the frequency domain characteristics of
the signals involved and which play important roles in
data interpretation. For instance, artifacts or non-neuronal
physiological signals like cardiac and respiratory signals
can be distinguished using their frequency characteristics.
This is an important advantage over common time domain
analysis where these non-neuronal signals have to be elim-
inated somehow most often by ad hoc methods, when that
comes to be done at all.
Whereas defining Granger causality is straightforward in

the case of pairs of time series, multivariate generalizations
are less obvious [Geweke, 1984; Hosoya, 2001]. To over-
come these difficulties, partial directed coherence (PDC)
was introduced [Sameshima and Baccalá, 1999; Baccalá
and Sameshima, 2001], developed [Schelter et al., 2006;
Baccalá and Sameshima, 2001] and a considerable amount
of successful applications in neurophysiology have been
done [Fanselow et al., 2001; Yang et al., 2005; Supp et al.,
2005; Schlogl and Supp, 2006].
A useful form of PDC called generalized PDC (GPDC) is

achieved by suitable normalization [Baccalá et al., 2006,
Baccalá et al., 2007] so that frequency domain causality
from the j-th time series to the i-th time series at frequency
k is defined as:

pijðkÞ ¼
aijðkÞ 1

riffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk
i¼1

aijðkÞ
�� ��2 1

r2
i

s ð6Þ

where

aijðkÞ ¼ dij �
Xp
l¼1

a
ðlÞ
ij expð�2plk

ffiffiffi
1

p
Þ ð7Þ

for dij 5 1 if i 5 j and 0 otherwise. It is clear that null
GPDC in all frequencies indicates absence of Granger cau-
sality and vice versa.
The main advantage of GPDC remains in its interpret-

ability as a measure of strength of connectivity between
neural structures. The square modulus of GPDC value
from j-th time series by i-th series can be understood
intuitively as the proportion of the power spectra of the
j-th time series, which is sent to the i-th series consider-
ing the effects of the other series. Furthermore, it can be
shown to be a factor in the decomposition of the coher-
ence in the bivariate case and of partial coherence in the
multivariate case. Hence, zero GPDC (pij(k) 5 0) can be
interpreted as absence of functional connectivity from
the j-th structure to the i-th structure at frequency k and
high GPDC, near one, indicates strong connectivity
between the structures.
In the literature there are also other measures of neural

connectivity in the frequency domain. For instance,
directed transfer function (DTF) and relative power con-
tribution (RPC) have been used for the analysis of EEG
[Kaminski et al., 2001] and fMRI [Yamashita et al., 2005],
respectively. However, in the bivariate case, GPDC, DTF,
and RPC are all equivalent in the sense that when one of
them is zero the others are also zero. The difference
becomes evident in the multivariate case when PDC is
the frequency domain counterpart of Granger causality
in time domain [Lütkepohl, 1993; Baccalá and Same-
shima, 2001]. Actually, DTF and RPC are not able to dis-
tinguish between direct and indirect pathways linking
different structures; thus they do not provide the multi-
variate relationships from a partial perspective.
To provide a common comparative picture PDC’s prop-

erties are contrasted to those of other connectivity methods
in Table I.

Multisubject Hypothesis Testing Using Bootstrap

Most fMRI studies are based on multiple subject analysis
for inference about the population. Because of its robust-
ness against outliers (which are common in medical stud-
ies), the median GPDC coefficient across subjects is an
attractive group statistic. However, the distribution of the
median GPDC’s across subjects under the null hypothesis
of zero GPDC in specific frequencies is difficult to obtain
mainly because magnetic resonance noise is non-Gaussian
[Wink and Roerdink, 2006] and the number of subjects in
fMRI experiments is usually small. In this case, results
about asymptotic distribution of quantiles are not
adequate. Thus, we suggest the following bootstrap algo-
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rithm to obtain the statistical significance of the group
GPDC statistic:

� Step 1: Fit VAR models for the BOLD time series of
each subject separately.

� Step 2: Obtain the VAR coefficient estimates and resid-
uals for each subject.

� Step 3: For each frequency, calculate the GPDC esti-
mates [see Eq. (7)].

� Step 4: Obtain the median GPDC across subjects at
each frequency (observed GPDC).

� Step 5: For each subject, resample the residuals (random
sampling with replacement) obtained in Step 2.

� Step 6: To test each influence from time series j to i,
assume a model where the VAR coefficients aij

(l), l 5
1,. . .,p (i.e., all coefficients related to time series j caus-
ing i) are 0. The other VAR coefficients remain as orig-
inally estimated by least squares in Step 2. Basically,
this step consists of assuming a model under the
assumption of no Granger causality from time series j
to i, and thus can be used to generate bootstrap sam-
ples under the null hypothesis.

� Step 7: By using the resampled residuals obtained in
Step 5, and the model specified in Step 6, simulate a
bootstrap multivariate time series (note that this pro-
cedure generates time series under the null hypothesis
of no ‘‘causality’’ from time series j to i).

� Step 8: Obtain the median GPDC for this bootstrap
sample.

� Step 9: Go to step 5 until the desired number of boot-
strap samples is achieved.

� Step 10: Estimate the critical value for each frequency
using the respective median GPDC bootstrap samples.
The critical value is defined as the (1 2 a) quantile of
bootstrap samples, where a is the expected Type I
Error.

� Step 11: Compare the observed median GPDC with
the estimated critical value.

A diagram of the previous steps is presented in Figure
1. This is a general algorithm that may be applied to any
statistic obtained by using any function of GPDC coeffi-
cients. This is a useful property, as any hypothesis on
moments or quantiles can be tested analogously and inde-
pendently on the distribution of the data.

Data Acquisition and Experiment

In this study, six healthy subjects executed a language-
related task. Incomplete sentences with a missing word
were visually (text) presented to them. The missing word
was reveled only after a short time interval, allowing the
subjects to process the sentence. Illustrative examples of this
task are the sentences: ‘‘He posted the letter without a . . .’’
or ‘‘The leaves are already falling from the . . .’’. The stems
were presented for 2,500 ms, followed by a blank screen. Af-
ter an interval of 700 ms the target word appeared (e.g.,
‘‘stamp’’). The subjects were asked to respond if the target
word adequately complete or not the sentence by using a
yes/no button box. After the response, an asterisk replaced
the target word until the beginning of the next trial.
Eighty sentences were presented to the subjects (in five

runs of 16 trials) in fixed intervals of 20.4 s, corresponding
to 12 time points per sentence. In other words, the subjects
were asked to complete different sentences periodically in
a cycle of 12 points. The aim of this experiment was to
identify the areas activated when subjects did these tasks
to study sentence processing in healthy controls.
Gradient echo-planar images were acquired in a 1.5

Tesla magnetic resonance GE system (General Electric,

TABLE I. Comparison between connectivity models

Frequency
specification

Intensity
interpretation Directionality

Partial
relationship

Pearson correlation No Yes No No
Granger causality test No No Yes Yes
Coherence Yes Yes No No
Partial coherence Yes Yes No Yes
PDC Yes Yes Yes Yes
DTF Yes Yes Yes No
RPC Yes Yes Yes No

Figure 1.

Diagram of bootstrap GPDC testing.
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Milwaukee, WS) at the Maudsley Hospital, Institute of

Psychiatry, King’s College London. The total number of

volumes was 960, acquired using T2* weighted MR

images depicting BOLD contrast (parallel to intercomissu-

ral plane, TE 5 40 ms, TR 5 1.7 s, in plane resolution 5
3.125 mm, thickness 5 7.0 mm, gap 5 0.7 mm, flip angle

5 908) [Arcuri et al., 2000].

Images Processing

The fMRI data was preprocessed by using head motion
realignment (rigid body transformation), slice time correc-
tion, spatial smoothing (Gaussian kernel with size of five
voxels) and normalization to the space of Talairach and
Tournoux [1988]. The group activation maps were
obtained using the GLM assuming an HRF function com-

Figure 2.

Language task activation maps (cluster wise P-value <0.01). [Color figure can be viewed in the

online issue, which is available at www.interscience.wiley.com.]

Figure 3.

Illustrative ROIs’ time series of a subject.
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posed of two Poisson functions with peeks in 9.1 (activa-
tion) and 13.1 s (undershoot) after the presentation of sen-
tences. The events modeled by GLM refer mainly to the
time when the target word appears and there is a cogni-
tive processing about the adequacy of the presented sen-
tence and this word, corrected by the haemodynamic
delay. These steps were carried out using the fMRI XBAM
software [Brammer et al., 1997], freely available at
www.brainmap.co.uk).

RESULTS AND DISCUSSION

Figure 2 shows the brain activation maps. Significant
activations (cluster wise P-values <0.01) were found in cer-
ebellum (Tal: 7, 278, 224), primary visual cortex (V1; Tal:
0, 285, 9), left superior temporal gyrus (STG; Tal: 251, 4,
22), left Insula (Tal: 247, 4, 9) and Thalamus (Tal: 11,
28, 0).
The primary visual cortex, superior temporal gyrus and

Insula were selected as regions of interest (ROI) for the
connectivity analysis. The information flow characteriza-
tion between these three areas was then assessed using
GPDC. Because of low frequency artifacts, which lead to
nonstationarity characteristics to the signals, the difference
operator was applied to ROI’s average time series. The se-
ries were then normalized to zero mean and unit variance.
Figures 3 and 4 illustrate the ROI’s time series for one
subject and the average periodogram across subjects,
respectively.
Language understanding and sentences processing are

extremely complex processes. First, the auditory (or visual)
stimuli must be translated into meaningful subjective con-
cepts, the underlying message must be understood, and
argumentation must be processed.
BA-17 is a sensory cortical area located in the calcarine

sulcus (occipital lobe) and corresponds to the primary vis-
ual cortex (or striate cortex). In this experiment, incomplete
sentences were presented visually, and thus, visual cortex
activation was expected. Broadman area 22 (BA-22) in the
lateral aspect of the superior temporal gyrus is classically
involved in processing auditory signals and language
reception being a major component of Wernicke’s area, the
main neuronal module in language comprehension. Hence,
sentence comprehension involves activity in this area. Fur-
ther, BA-72 in Insula is involved in language understand-
ing and processing. In this experiment, subjects were
asked to decide if the target word complete the sentences
presented, implying that the paradigm involves not only
language understanding but also the analysis of semantic
meaning.
It is important to highlight that these three areas do not

work independently, but form an integrated network.
Sonty et al. [2007] studied the changes in the effective con-
nectivity of language networks in cases of primary pro-
gressive aphasia. Obleser et al. [2007] have shown that
function integration of brain regions improves speech per-
ception. Karunanayaka et al. [2007] identified that lan-

Figure 4.

ROIs’ average periodogram across subjects.
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guage connectivity structure when children listen to histor-
ies is age-related.
Note that the ROI’s periodograms in Figure 4 show sig-

nificant power at 0.049 Hz (and 0.098 Hz, a harmonic),
which is exactly the stimulation frequency in this para-
digm. This result is expected as the ROI’s were identified
as regions which respond to the stimulus. In addition, har-
monic peaks are expected, since the haemodynamic
response differs significantly from sinusoidal functions.
Using multisubject GPDC analysis (Figs. 5 and 7), we
found evidence of a connectivity network involving the
ROIs’ concentrated mostly at 0.049 and 0.098 Hz. A dia-
gram representing the connectivity graph obtained using
the median PDC only at 0.049 Hz is shown in Figure 6.
The relationship between these areas directly related to the
execution of the task is expected to occur at this frequency.
Panel STG to Insula (see Fig. 5) shows that there are signif-
icant energies at other frequencies (e.g., frequencies less
than 0.03, at 0.07 Hz or 0.13 Hz), indicating the existence
of relationships between these areas, as mirrored by the
BOLD time series, but which are unrelated to processing
the task. Low frequency acquisition artifacts are frequent
in long scanning fMRI sessions. PDC is useful to discrimi-

nate between stimulus-induced functional connectivity
from other sources. However, the physiological origin (car-
diac, breath, etc.) of the connectivity generated by these
other sources may be difficult to discriminate, since alias-
ing is present in the data and oscillatory components of
BOLD signal and artifacts are still not completely identi-
fied or established. Thus, additional care must be to taken
when designing the experiment, because aliasing problems
may overlap the stimulation frequency.
Figure 7 indicates strong information flow from the

Insula to STG, where �33% of the spectrum energy of
Insula at 0.049 Hz (see Fig. 5) is sent to STG. Furthermore,
PDC analysis shows significant amount of information
from the visual cortex (11% of the energy) to the Insula,
which is reasonable, as the sentences were presented visu-
ally. The other connections are marginally significant (near
statistical threshold) and show low power (less than 5%),
indicating no relevant information flow. In summary, mul-
tisubject GPDC analysis suggests that participants read the
sentences; the information migrates from the primary vis-
ual cortex to the Insula and then to STG. Figures 6 and 7
show the estimated coherence function between the ROI
areas which show patterns similar to GPDC, but is unable

Figure 5.

ROIs’ multisubject median partial directed coherence. The dotted line shows the 95% confidence

upper bound under the hypothesis of no connectivity between the nodes.
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to pinpoint link directionality hindering its interpretation
(see Table I).
The statistical power of VAR model-based connectivity

estimators like PDC is a compromise between the number

of ROIs, number of lags considered, and signal duration.
Lags increase the parameters that need to be estimated in a
linear fashion, whereas the number of considered ROIs does
so quadratically. Hence including regions that do not signifi-

Figure 6.

ROIs’ multisubject median coherence function. The dotted line shows the 95% confidence upper

bound under the hypothesis of no connectivity between the nodes (critical region).

Figure 7.

Multisubject median partial directed coherence at 0.049Hz, simple coherence at 0.049Hz (using

the same bootstrap algorithm). The frequency of stimulation in the language paradigm was

0.049Hz. The thick solid lines describe the links with relevant intensity of information flow. The

critical regions at 5% of significance are values greater than the shown in parentheses.
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cantly participate in the connectivity network implies a
sharp decrease in the power to identify links. One may try
to circumvent this problem by constraining the number of
parameters in the model, i.e., by specifying the linkages a
priori, even though this limits the PDC’s usefulness as an
exploratory tool. In fMRI experiments, our experience with
typical signal durations, suggests selecting a maximum of
five or six areas for inclusion in the analysis.
A second limitation involving fMRI experiments with

the execution of multiple tasks is that they do not provide
information about what is being processed nor where each
cognitive component of the task is processed and much
less how this information is processed to produce behav-
ior. In the present case, GPDC may help infer the interac-
tions between the areas activated in the task, suggesting
the existence of connectivity networks, with a periodic in-
formation flow at the frequency of stimulation, besides
being able to pinpoint the direction of this flow. Note,
however that the inferred information pathway is not
enough to assess whether semantic interpretation or sen-
tence completion happen at the Insula, the STG or both.
The answer to this question is conceivably only possible
by comparing the present results to other studies, as one
cannot draw such conclusions from the present data/ex-
perimental paradigm alone.
In view of these limitations, future works will require

elaborating paradigms and sequences of stimulation to
separate the cognitive components, using state ‘‘subtrac-
tions’’ or similar techniques [Amaro and Barker, 2006].
However, the discrimination between task-related and
other components provided by GPDC represents a starting
point in addressing these questions.

CONCLUSION

In this article, we introduced a method for connectivity
inference between neural structures which: (1) is based on
Granger causality concept, (2) is able to discriminate physi-
ological and nonphysiological components based on their
frequency characteristics, (3) is multivariate, i.e., it consid-
ers the partial/direct relationships between all pairs of
time series. Also a bootstrap procedure for the median
normalized GPDC analysis of fMRI data is proposed.
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Baccalá LA, Takahashi YD, Sameshima K (2006): Computer inten-
sive testing for the influence between time series. In Handbook
of Time Series Analysis. Berlin: Wiley VCH. pp 365–388.
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