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ABSTRACT This paper describes the rigorous asymptotic distributions of the recently introduced
partial directed coherence (PDC) – a frequency domain description of Granger causality between
multivariate time series represented by vector autoregressive models. We show that, when not zero,
PDC is asymptotically normally distributed and therefore provides means of comparing different
strengths of connection between observed time series. Zero PDC indicates an absence of a direct
connection between time series, and its otherwise asymptotically normal behavior degenerates into
that of a mixture of χ2

1 variables allowing the computation of rigorous thresholds for connectivity
tests using either numerical integration or approximate numerical methods. A Monte Carlo study
illustrates the power of the test under PDC nullity. An analysis of electroencephalographic data,
before and during an epileptic seizure episode, is used to portray the usefulness of the test in a real
application.
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Introduction

In its quest to understand Nature and its workings, one of Science’s core goals is to establish
the ‘cause and effect’ relationship between observations. Controlled experiments are the
ideal tools when some variables are accessible. In many cases, however, either because of
cost or lack of knowledge as to how to intervene, the underlying implication of events must
be deduced from observation alone.

In his 1969 paper, Clive Granger (1969) suggested a concept, now bearing his name,
which was influenced by Wiener’s general theory of least mean squared error prediction
(Wiener, 1956), whereby the evolution of a sequence of time observations (time series)
x1(k) could be seen as caused by another observed time sequence x2(k) if one’s ability to
predict x1(k) could be improved significantly by including knowledge of x2(k)’s past as
prior available information.

Correspondence Address: Daniel Yasumasa Takahashi, Centro de Medicina Nuclear, Hospital das Clínicas –
FMUSP, Travessa da Rua Ovídio Pires de Campos, s/n, São Paulo, SP 05403-010, Brazil. Email:
yasumasa@ime.usp.br

0266-4763 Print/1360-0532 Online/07/101255–15 © 2007 Taylor & Francis
DOI: 10.1080/02664760701593065
Techset Composition Ltd, Salisbury CJAS259158.tex Page#: 1269 Printed: 10/11/2007



51

56

61

66

71

76

81

86

91

96

1256 D. Y. Takahashi et al.

Most practical means of applying these ideas have been focused on time domain
approaches by fitting time series prediction models (namely vector autoregressive mod-
els) so that hypothesis testing of the nullity of model parameters describing the mutual
influence between the time series could be used for inference. In the context of pairs of time
series, this idea may quite generally be formalized as:

σ 2(x2(k)|x2(k−), x1(k−)) < σ 2(x2(k)|x2(k−)) (1)

where σ 2(x2(k)|·) stands for mean squared prediction errors of x2(k) under, respectively,
the conditions of knowledge of the past of x2(k), denoted by x2(k−), or the joint knowledge
of both x2(k−) and x1(k−)–the past of x1(k).

The outstanding property of inequality (1) is that a decrease in prediction error need not
hold when x1(k) and x2(k) switch positions, i.e. Granger causality is not reciprocal. If x1(k)

Granger causes x2(k) then it does not necessarily follow that x2(k) Granger causes x1(k).
Or equivalently the distinctive fact about Granger causality is its unreciprocal nature, i.e.

x1(k)
Granger−→ x2(k) (2)

does not imply

x2(k)
Granger−→ x1(k) (3)

which means that it allows determining the direction of information flow between observed
time sequences. Furthermore, as argued by Sims (1972, failure of either equation (2) or
equation (3) furnishes a means for detecting feedback absence. One should additionally
note that the present form of causality needs to be properly qualified. In fact, the conclusion
that the evolution of a time series is controlling that of another time series is not always
justified as discussed by Granger himself (Granger, 1980). An example of this is represented
by an unobserved time series that acts upon those under scrutiny, leading to pitfalls of
interpretation (Lütkepohl, 1982; Triacca, 1998).

In practice, a simple first-order approximation to detecting the validity of Granger
causality is through a linear time series model:

x2(k) = a22(1)x2(k − 1) + a22(2)x2(k − 2) + . . .

+ a21(0)x1(k) + a21(1)x1(k − 1) + . . .

among observed time samples, whereby Granger causality from x1(k) to x2(k) holds if one
can show that some a21(r), (r = 1, 2, . . .), significantly differ from zero in a statistical sense.
If, in addition, a21(0) is significantly different from zero, one also speaks of instantaneous
Granger causality, which is a reciprocal relation unlike Granger causality.

Also, among these time domain approaches one may mention the contributions of
Caines & Chan (1975) and Geweke (1982) aimed at comparing pairs of time series.
Geweke (1984) considered multivariate time series generalizations as well. Recent practical
approaches are described by Lütkepohl (1993) in the multivariate case.

In some areas of science, like neuroscience for example, frequency domain descriptions
of many phenomena are of the essence (Daly & Timothy, 1990). In electroencephalography
(EEG) for instance, brain states are characterized by well known rhythms (α, β, . . .) that
have well established clinical and physiological interpretations (Başar, 1998). From the
idea that an autoregressive model furnishes a parametric means of spectral description
(Priestley, 1981; Marple, 1987) by representing time series spectra as a result of passing
the white noise represented by model residuals through filters described by the coefficients
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of the model, Saito & Harashima (1981) (this was, in fact, preceded by a little-noticed
suggestion by Akaike, 1968) proposed a method for gauging Granger causality by factoring
the cross-spectral density matrix of bivariate processes by fitting bivariate autoregressive
models (see also Schnider et al., 1989). Frequency domain generalizations from the bivariate
case soon followed (Kaminski & Blinowska, 1991; Baccalá et al., 1998) and more recently
(Baccalá & Sameshima, 2001a). In fact, it was possible to show that these suggestions
refer to multivariate time series model factorizations of the cross-spectral matrix associated
respectively with ordinary and partial coherence matrices leading respectively to the notions
of directed coherence (DC) (Baccalá et al., 1998) and partial directed coherence (PDC)
(Baccalá & Sameshima, 2001c). It is important to mention that the measure proposed in
Kaminski & Blinowska (1991) named direct transfer function (DTF) differs from DC in
how it is normalized. Recent comparative reviews of the properties between DTF and
PDC and how they are interpreted can be found in Baccalá & Sameshima (2001b) and
Kus et al. (2004).

Finally, because these ideas represent a clear approach to the problem of neural
connectivity, i.e. that of establishing what neural pathways are active under given situa-
tions of behavioral interest, the recent literature in neuroscience has seen many attempts at
their systematic use (Fanselow et al., 2001; Korzeniewska et al., 2003).

One serious limitation of studies using the former generalized quantities in neuroscience
has, however, thus far been the fact that the criteria used to decide upon the connectivity
between observations have largely been obtained through numerical simulations (Schnider
et al., 1989; Baccalá & Sameshima, 2001b) that led to essentially arbitrarily imposed thresh-
olds (Sameshima & Baccalá, 1999). The aim of the present paper is to overcome this
limitation by providing rigorous asymptotic results on PDC values under mild conditions.

The paper is organized as follows: the partial directed coherence definition is reviewed
in the next section together with a statement of the inferential problem. The associated
asymptotic results are then stated and are followed by numerical illustrations for both
simulated and actual data. The paper ends with a discussion that is followed by the rigorous
proofs of its results in the Appendices.

Background

Given a set S = {xn(k), 1 ≤ n ≤ N} of simultaneously observed jointly second-order sta-
tionary time series that are described by the pth order vector autoregressive (VAR(p))
model ⎡

⎢⎣
x1(k)

...

xN(k)

⎤
⎥⎦ =

p∑
r=1

Ar

⎡
⎢⎣

x1(k − r)
...

xN(k − r)

⎤
⎥⎦ +

⎡
⎢⎣

w1(k)
...

wN(k)

⎤
⎥⎦ (4)

where the i, j th entry aij (r) of the coefficients matrix Ar describes the linear relationship
between time series xi(k) and xj (k) at the rth past lag, and wi(k) represent the driving
innovations. For VAR(p) models, testing for the existence of Granger causality from xj (k)

to xi(k) is equivalent to assessing (Lütkepohl, 1993, p. 39):

H : aij (r) = 0, ∀r ∈ {1, . . . , p}

The possibility of directly writing the partial coherence between xi(k) and xj (k) from
the parameters in model (4), i.e. by isolating the interactions between the latter series
from those due to the other remaining ones in S led immediately to the definition of PDC
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(Sameshima & Baccalá, 1999; Baccalá & Sameshima, 2001a) as

πij (λ) = Āij (λ)√∑N
n=1 Ānj (λ)Ā∗

nj (λ)

(5)

where

Āij (λ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 −
p∑

r=1

aij (r) exp(−j2πλr), if i = j

−
p∑

r=1

aij (r) exp(−j2πλr), otherwise

(6)

with j = √−1 in the exponentials.
Thus, by virtue of equation (6), equation (5) can be considered a frequency domain

representation of Granger causality since H holds if and only if πij (λ) ≡ 0 for all sampling
rate normalized frequencies λ ∈ [−0.5, 0.5].

Here we address two related asymptotic problems: the first refers to when

H0 : |πij (λ)|2 = 0

is true; whereas the second problem allows finding asymptotic confidence intervals for
|πij (λ)|2 when H0 does not hold. This is necessary because distinct limit distributions
apply to each case.

To state the final results compactly, it is convenient to introduce the following notation:

ᾱ(λ) = vec(I) −
p∑

r=1

vec(Ar ) exp(−j2πλr) (7)

where I is an N × N identity matrix and vec stands for the usual matrix column stacking
operator. Also let

a(λ) =
[

Re(ᾱ(λ))

Im(ᾱ(λ))

]
(8)

This allows rewriting |πij (λ)|2 as a ratio of quadratic forms of real normal variables (Lemma
1 in Appendix A)

|πij (λ)|2 = aT (λ)Ic
ij a(λ)

aT (λ)Ic
j a(λ)

(9)

with the matrix

Ic
ij =

[
Iij 0
0 Iij

]

where the N2 × N2 matrix Iij is made by zeros except for the entry (l, m) = ((j − 1)N +
i, (j − 1)N + i), which equals 1.

Likewise

Ic
j =

[
Ij 0
0 Ij

]

contains N2 × N2 blocks Ij with zeros except for (l, m) : (j − 1)N + 1 ≤ l = m ≤ jN .
Also let �̄ be the autocovariance of â given by Lemma 2 in Appendix A. Model estimates

are based on time series comprising ns time observations.
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Results

PROPOSITION 1 For a stable stationary Gaussian VAR(p) process, the maximum likelihood
estimator |π̂ij (λ)|2 is (i) consistent and (ii) asymptotically normal if |πij (λ)|2 	= 0, i.e.,

√
nsγ

−1(â)(|π̂ij (λ)|2 − |πij (λ)|2) d−→ N (0, 1) (10)

where

γ 2(â) = G(â)T ˆ̄�G(â)

and

G(â) = 2(Ic
ij â)(âT Ic

j â)−1 − 2(Ic
j â)(âT Ic

j â)−2(âT Ic
ij â)

In these equations a’s dependence on λ was omitted. This is done throughout the text when
no danger of confusion exists.

Since G(a) = 0 when H0 holds, the first-order approximation result in equation (10) fails
and calculation of higher order terms in the expansion of |π̂ij (λ)|2 becomes necessary. This
leads to Proposition 2.

PROPOSITION 2 When H0 holds, under the conditions of Proposition 1,

ns(âT Ic
i â)(|π̂ij (λ)|2 − |πij (λ)|2) d−→

q∑
k=1

lkχ
2
1 (11)

where lk are the eigenvalues of D = LT Ic
ij L, in which the matrix L is the Choleski factor in

�̄ = LLT

with q = rank(D) = 2, unless λ ∈ {0, ±0.5} or p = 1 when q = 1.

Computation of quantile thresholds in equation (11) calls either for the use of numer-
ical methods or the employment of approximate computations (Appendix B). Practical
hypothesis testing may proceed on a λ value basis.

Numerical Illustrations

Simulated Data

To assess the practical validity of the present results we performed Monte Carlo simulations
using 10,000 replications for ns = 100, 500, 1000, and 10,000 observed data points of the
following VAR(2) model:⎡

⎣x1(n)

x2(n)

x3(n)

⎤
⎦ =

⎡
⎣ 0.2 −0.4 0.3

a21(1) 0.8 0.4
0 −0.1 0.4

⎤
⎦

⎡
⎣x1(n − 1)

x2(n − 1)

x3(n − 1)

⎤
⎦

+
⎡
⎣ 0 −0.2 0

0 −0.1 0
0.5 0.2 0.1

⎤
⎦

⎡
⎣x1(n − 2)

x2(n − 2)

x3(n − 2)

⎤
⎦ +

⎡
⎣w1(n)

w2(n)

w3(n)

⎤
⎦ (12)

where wi(n) are mutually uncorrelated standard Gaussian innovations.
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Figure 1. Normal plots for PDC estimates for each pair of observed time series for ns = 1000. Note
the deviation from normality under H0 when evaluating x1 → x2. The computations refer to λ = 0.3.
Note also that, when PDC values are closer to the extremes (toward 0 and 1), the normal approximation
degrades accordingly. Panels along the main diagonal represent the normal plots of |πii(0.3)|2 for

i = 1, 2, and 3

An illustration of the PDC distribution pattern for a21(1) = 0 and λ = 0.3 is provided by
the normal plots in Figure 1, where normality is evident except for the relationship from
x1(n) to x2(n) in which Granger causality is absent. Observe that tail deviation increases for
PDC values close to the extremes 0 and 1. A more detailed distribution adjustment picture,
when H0 holds, is presented in Figure 2 by contrasting equation (11) to both the empirical
distribution obtained via Monte Carlo simulations (10 000 realizations) and the distribu-
tion of a cχ2

ν random variable, where c = ∑q

k=1 l2
k /

∑q

k=1 lk and ν = ( ∑q

k=1 lk
)2

/
∑q

k=1 l2
k

Figure 2. Theoretical (in solid gray), empirical (in dotted black), and Patnaik approximated cχ2
ν

(in dashed black) cumulative density functions for ns = 1000 under the null hypothesis (i.e.
|π21(0.3)|2 = 0) for the simulated model in equation (12). The x-axis corresponds to the left-hand

side of equation (11)
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Table 1. Percentile points for the empirical, theoretical and Patnaik approx-
imate cumulative distributions for ns = 1000 under the null hypothesis

(i.e. |π21(0.3)|2 = 0) for the simulated model in equation (12)

Percentile point
Cumulative

distribution 1% 5% 10% 15%

Empirical 0.014 0.071 0.146 0.230
Theoretical 0.013 0.069 0.143 0.222
Patnaik 0.003 0.031 0.085 0.153

(the Patnaik approximation, cf. Appendix B). These parameters were obtained adjusting
the first- and second-order moments of the right-hand side of equation (11) and cχ2

ν . A
Kolmogorov–Smirnov test did not reject the null hypothesis of equality of the empirical
and theoretical distributions, at 5%, and showed that the estimated PDC distribution con-
forms to the theoretical asymptotic distribution in equation (11). Table 1 shows a comparison
of the 1, 5, 10 and 15 percentile points of the cumulative distributions in the empirical, the-
oretical and Patnaik approximation cases. In this example, one can see that the empirical
and theoretical percentile values closely match while for the Patnaik approximation they
were underestimated.

In fact, the use of Proposition 2 leads to observed percentage rates of rejecting H0 of 5.86,
5.22, 5.12, and 4.71, respectively, for ns = 100, 500, 1000, and 10 000 time series points.
The test powers for different values of PDC, gauged by Monte Carlo simulations (10,000
realizations), are contrasted in Tables 2 and 3, respectively, for thresholds obtained by direct
computation of probability function in equation (B.1) and by the Patnaik approximation (see
Appendix B for more details).

Neurobiological Example. Three time series (T3, T4, and O1), selected from standard
international 10-20 EEG system, sampled at 200 Hz and derived from a patient with left
mesial temporal lobe epilepsy, with seizure focus roughly localized at the T3 channel area,
clinically diagnosed and post-surgically confirmed at the Neurological Division of Hospital
das Clínicas from the University of São Paulo, are used for the present illustration. Two
distinct data segments (each with 1000 data points, i.e. 5 s), during and immediately before a
seizure onset, separated by 20 s to exclude the transition period, were used in characterizing
the relationship between brain areas. The present choices were motivated by their impor-
tance toward understanding the physiopathological basis of epilepsy and the immediate

Table 2. Power of the proposed test for model given by equation (12) for differ-
ent a21(1) values under the nominal significance level of 5%, at λ = 0.3, using

quantiles given by Theorem 2

Percentage of rejection (%)

a21(1) |π21(0.3)|2 ns = 100 ns = 500 ns = 1000 ns = 10 000

0 0 5.86 5.22 5.12 4.71
0.05 0.0018 7.33 14.16 24.77 99.51
0.10 0.0070 13.93 45.73 78.10 100
0.15 0.0157 23.69 82.84 99.10 100
0.20 0.0275 38.43 98.05 99.99 100
0.50 0.1503 99.33 100 100 100
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Table 3. Power of the proposed test for model given by equation (12) under the
nominal significance level of 5%, at λ = 0.3, using the Patnaik approximation

Percentage of rejection (%)

a21(1) |π21(0.3)|2 ns = 100 ns = 500 ns = 1000 ns = 10 000

0 0 5.64 5.12 5.02 4.77
0.05 0.0018 7.11 13.96 24.49 99.51
0.10 0.0070 13.68 45.38 77.85 100
0.15 0.0157 23.24 82.58 99.09 100
0.20 0.0275 37.83 98.02 99.99 100
0.50 0.1503 99.33 100 100 100

application of the present method to clinical diagnosis support. Further empirical studies
of EEG recordings from patients with temporal lobe epilepsy using PDC can be found in
Baccalá et al. (2004).

Three-variate models were estimated for each segment with model orders obtained via
Akaike’s information criterion (Lütkepohl, 1993, p. 129) leading to p = 4 and p = 5,
respectively, to each segment. Estimated model adequacy was ensured by a Portmanteau
test on the residual autocorrelations whose whiteness could not be rejected at 5% (Lütkepohl,
1993, p. 150).

After PDC computation, null hypothesis tests were performed for each frequency (λ =
1, 2, . . . , 49 Hz) and each channel pair at 5%. When H0 could be rejected, confidence
intervals were computed under the normal approximation, leading to Figures 3 and 4.
For comparison in these figures, an asterisk indicates rejection of the absence of Granger
causality by a standard time domain Wald test at 5% (Lütkepohl, 1993, p. 94).

Before seizure onset, there are no significant interactions at frequencies lower than 5 Hz,
even though PDC is significant for higher frequencies (Figure 3). On the other hand, during

Figure 3. Estimated PDC values between O1, T3, and T4 channels preceding the seizure onset.
Normalized power spectrum densities are shown by the panels along the main diagonal. Only values for
1 Hz ≤ λ ≤ 49 Hz were plotted due to the physiological significance. Line segments in gray represent
those frequencies in which null hypotheses were not rejected at 5% level, while 95% confidence
intervals are provided in black for rejected frequencies at 5%. Channel pairs with significant time

domain Granger causality at 5% are indicated by an asterisk
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Figure 4. Estimated PDC values between O1, T3, and T4 channels during the seizure. See legend to
Figure 3 for further explanation

the seizure there are significant interactions between the channels for lower frequencies
(Figure 4). This is in accord with physiological data, as temporal lobe seizures are charac-
terized by both low frequency oscillations (≈5 Hz) and channel synchronization (Daly &
Timothy, 1990). Also of note is the significant increase of PDC from O1 to T3 during
the seizure when compared to the other segment, thereby matching the fact that T3 is the
epilepsy-focus brain area (Baccalá et al., 2004).

Those channel pairs with significant interactions in the frequency domain (PDC test) were
also significant in the time domain (Granger causality test); the converse being true as well.

Discussion

Partial directed coherence was proposed as a frequency domain counterpart of the Granger
causality concept for VAR models (Baccalá & Sameshima, 2001c). The asymptotic dis-
tribution of its maximum likelihood estimator was derived for normally distributed VAR
coefficients. This result opens the way for objectively comparing the difference of the
strength of connection between time series.

Approximate confidence intervals and a test for null PDC was proposed. A Monte
Carlo experiment showed the reasonable power attainable by the test under mild sample
size (ns = 1000).

An alternative derivation of the asymptotic statistics under the null hypothesis has been
recently provided by Schelter et al. (2006) who furnish additional applied examples. The
equivalence of the Schelter et al. (2006) results follows from the fact that the non-zero eigen-
values of D = LT Ic

ij L are the same as those of Ic
ij LLT Ic

ij which has only four non-necessarily
zero entries that are responsible for the two eigenvalues of D that are not necessarily zero
(note that (Ic

ij )
2 = Ic

ij ).
Because of its ready interpretability in the frequency domain, especially in neuroscience,

the present rigorous hypothesis testing results provide more information than traditional
time domain Granger causality tests.

The application of PDC analysis to neurobiological data is promising and allows unrav-
eling biologically interesting results. Recent applications of PDC in experimental work can
be found elsewhere (Fanselow et al., 2001; Baccalá et al., 2004; Supp et al., 2005).
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Appendix A

Let α = vec[A1 . . . Ap]. Consider N2 × pN2 dimensional matrices

C(λ) = [C1(λ) . . . Cp(λ)]
and

S(λ) = [S1(λ) . . . Sp(λ)]
such that

Cr (λ) = diag([cos(2πrλ) . . . cos(2πrλ)])
and

Sr (λ) = diag([sin(2πrλ) . . . sin(2πrλ)])
Hence equation (7) can be rewritten as

ᾱ(λ) = vec(I) − (C(λ) − jS(λ))α

(for j = √−1) and equation (8) as

a(λ) =
[
vec(I)

0

]
− C(λ)

[
α

α

]
(A.1)

where

C(λ) =
[

C(λ) 0
0 −S(λ)

]
Then simple substitution produces:

aT (λ)Ic
ij a(λ) = |Āij (λ)|2

and

aT (λ)Ic
j a(λ) =

N∑
n=1

Ānj (λ)Ā∗
nj (λ)

where the roles of Ic
ij and Ic

j are to select the necessary variables from a(λ) in writing
|πij (λ)|2. This proves the following Lemma.



551

556

561

566

571

576

581

586

591

596

1266 D. Y. Takahashi et al.

LEMMA 1 PDC defined by equation (5) can be written as the ratio of real quadratic forms
given by equation (9).

To obtain the asymptotic behavior of the estimators of interest, the starting point is the
following fundamental lemma.

LEMMA 2 For a stationary stable Gaussian VAR(p) process as defined in model (4), the
maximum likelihood estimator of a is consistent and

√
ns(â(λ) − a(λ))

d−→ N (0, �̄(λ))

where

�̄(λ) = C(λ)�aC(λ)T (A.2)

for

�a =
[

� �

� �

]

Here, � = �x(0)−1 ⊗ �w where �x(0) and �w stand, respectively, for autocovariance
matrices of the data

x = [x1(k) . . . xN(k) . . . x1(k − p + 1) . . . xN(k − p + 1)]T

and of the innovations

w = [w1(k) . . . wN(k)]T
The operator ⊗ is the Kronecker product.

Proof The lemma is a direct consequence of the result

√
ns(α̂ − α)

d−→ N (0, �x(0)−1 ⊗ �w)

(see Lütkepohl, 1993, after building a(λ) as in equation (A.1), so that straightforward
calculation of its covariance leads to equation (A.2).

This completes the proof. �

Proof of Proposition 1
Proof
The proof follows directly from the following version of the delta method (Serfling, 1980)
for a real differentiable function g(a(λ)) (= |πij (λ)|2) of the normal vectors a(λ) (guaranteed
by Lemma 2) whereby

√
ns(g(â) − g(a))

d−→ N (0, GT � G)

where G = ∇ag is the standard vector gradient ofg in equation (9) computed at a. The propo-
sition is obtained by straightforward computation of G recognizing � = �̄ in Lemma 2.
Slutsky’s lemma allows using estimated quantities in lieu of the actual values completing
the proof. �

Proof of Proposition 2
Proof
Consider the following generalized version of the delta method (Serfling, 1980):
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THEOREM 1 Suppose Xn = (Xn1, . . . , Xnk)
T with

√
n(Xn − μ)

d−→ N (0, �)

Let g(x) be a real-valued function with continuous partials of order m > 1 in the neigh-
borhood of x = μ, with all the partials of order j with 1 ≤ j ≤ m − 1 vanishing at x = μ

and non-vanishing mth order partials at x = μ. Then

(
√

n)m(g(Xn) − g(μ))
d−→ 1

m!
k∑

i1=1

. . .

k∑
im=1

∂mg

∂xi1 . . . ∂xim

∣∣∣∣
x=μ

m∏
j=1

Zij

with

Z = (Z1, . . . , Zk)
T

∼ N (0, �)

Since the first-order (m = 1) partial derivatives of g(a) are zero under H0 (G(a) = 0),
one may employ the next level of approximation given by Theorem 1. Therefore, computing
the second-order (m = 2) derivatives of g(a(λ)), and noting g(a(λ)) = 0 under H0 implies
that Ic

ij a(λ) = 0, hence leading to

∂2g(a(λ))

∂a(λ)∂aT (λ)

∣∣∣∣
Ic
ij a(λ)=0

= 2Ic
ij (a

T (λ)Ic
j a(λ))−1

or equivalently in equation () Q1

ns(âT (λ)Ic
j â(λ))(|π̂ij (λ)|2 − |πij (λ)|2) d−→ xT Ic

ij x

for x
d−→ N (0, �̄), so that the use of Slutsky’s lemma concludes the first part of the proof

by allowing the use of estimated quantities.
It is possible to compute xT Ic

ij x from conveniently transformed variables. If this transfor-

mation is done through the matrix L obtained from the Choleski decomposition of �̄ = LLT

one may write x = Ly, so that xT Ic
ij x = yT LT Ic

ij Ly = yT Dy. This choice of new trans-
formed variables in the vector y = (LT L)−1LT x makes them mutually independent zero
mean unit variance, in fact,

E[yyT ] = (LT L)−1LT E[xxT ]L(LT L)−1 = (LT L)−1LT LLT L(LT L)−1 = I

Now diagonalizing D = LT Ic
ij L = U�UT with UUT = Iq×q produces

yT Dy =
q∑

k=1

lkyT ukuT
k y =

q∑
k=1

lkζ
2
k

where uk is the kth column of U. It is easy to show that the variables ζk = uT
k y are mutually

independent, Gaussian zero mean and of unit variance so that their squares are χ2
1 random

variables.
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As rank(X) = rank(XT ) and rank(XY) ≤ min(rank(X), rank(Y)), it follows that

rank(D) = rank(LT Ic
ij L)

= rank(LT Ic
ij Ic

ij L)

= rank(Ic
ij LLT Ic

ij )

= rank(Ic
ij �̄(λ)Ic

ij )

= rank(Ic
ijC(λ)�aC(λ)T Ic

ij )

which is upper bounded by rank(Ic
ij ) = 2. It is readily verified that, when λ ∈ {0, ±0.5},

rank(C(λ)) = 1 imposing the upper bound.Also, when p = 1, rank(Ic
ijC(λ)�aC(λ)T Ic

ij ) =
1 regardless of λ because, in this case, the largest non-vanishing minor in the matrix is

�(j−1)N+i

[
cos2(2πλ) sin(2πλ) cos(2πλ)

sin(2πλ) cos(2πλ) sin2(2πλ)

]

whose rank is 1, where �(j−1)N+i is the ((j − 1)N + i, (j − 1)N + i) entry of �, thereby
concluding the proof. �

Appendix B. Quantile Computations

The p-value computations in this paper have been made using the following numerical
inversion formula of the characteristic function:

THEOREM 2 (Imhof, 1961)

• The characteristic function of the right-hand side of equation (11) is

φ(t) =
K∏

k=1

(1 − 2jlkt)−1/2

with j = √−1.
• The imaginary part of exp(−juxφ(u)) is expressed as sin θ(u)/ρ(u), where

θ(u) = 1

2

K∑
k=1

{tan−1(lku)} − xu

2

and

ρ(u) =
K∏

k=1

(1 + l2
ku

2)1/4

• The function uρ(u), u ≥ 0, increases monotonically toward +∞. Hence, in numerical
procedure, the integration in the inversion formula

P(yT Dy ≤ x) = 1

2
− 1

π

∫ ∞

0

sin θ(u)

uρ(u)
du (B.1)

may be carried over a finite range 0 ≤ u ≤ U with error of truncation tU , which satisfies

|tU | ≤
(

π
K

2
UK/2

K∏
k=1

|lk|1/2

)−1
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• The probability density function can be obtained by

p(x) = 1

π

∫ ∞

0
ρ(u)−1 cos θ(u)du

A FORTRAN implementation of these numerical integrations is given by Farebrother
(1990).

Patnaik Approximation. An alternative quick way of computing an approximation
to equation (11) is to see that a mixture of χ2

1 can be approximated by cχ2
ν ran-

dom variables (Johnson et al., 1995; Patnaik, 1949) for c = ∑q

k=1 l2
k /

∑q

k=1 lk and ν =
(
∑q

k=1 lk)
2/

∑q

k=1 l2
k . Generally, since q ≤ 2, it follows that if l1 >> l2, then c ≈ l1 and

ν ≈ 1, whereas if l1 ≈ l2, then c ≈ l1 and ν ≈ 2. Note that this approximation entails the
use of a χ2 distribution with non-integer ν which can be computed using the gamma function
(Johnson et al., 1995).




