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ABSTRACT

This work proposes deterministic particle filtering structures

for joint blindly equalizing/decoding convolutionally coded

signals transmitted over frequency selective channels. After

describing the proposed structures, we show how to evaluate

the weight update functions corresponding to the adopted

signal model. Numerical simulations show that the algo-

rithm employing deterministic particle selection greatly out-

performs alternative stochastic strategies, even when the lat-

ter employ the optimal importance function.

1. INTRODUCTION

Particle filtering techniques have attracted much interest due

to their ability to provide approximate solutions to other-

wise intractable Bayesian filtering problems. These meth-

ods approximate target posterior densities by a weighted

sum of Dirac measures centered on the so-called particles

- samples of the inferred random variable - which are most

frequently obtained by stochastic procedures based on the

importance sampling principle.

Recently, several publications [1] [2] pointed out that

the raw Monte Carlo procedure used to extend, i.e., draw

new elements to the particles at each iteration can be re-

placed by deterministic procedures when the variable being

estimated has a low dimensional discrete distribution. The

resulting algorithms, henceforth called deterministic parti-

cle filters, generally exhibit greatly improved performance

over traditional algorithms.

As described next, deterministic particle filters must per-

form particle selection (i.e., resample) at each iteration, ei-

ther via stochastic or deterministic methods [2]. In this

work, we provide a new interpretation of deterministic parti-

cle filtering algorithms and evaluate their performance in the

solution of the joint blind equalization and decoding prob-

lem [3], considering now the use of recursive convolutional

codes. For the sake of comparison, simulation results of

both stochastic and deterministic resampling procedures are

provided.
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This work is organized as follows: we introduce parti-

cle filtering techniques in Sec. 2, followed by a description

(Sec. 3) of the joint equalization and decoding problem and

the deduction of the allied densities needed to solve it via

particle filtering. In Sec. 4 numerical simulation results il-

lustrate the relative performance of the proposed methods,

wherefrom conclusions are summed up in Sec. 5.

2. PARTICLE FILTERS

Let yn denote the observed output at instant n of a possi-

bly non-linear and time-varying stochastically driven sys-

tem whose state variable xn we want to estimate. In a

Bayesian filtering framework, one wishes to determine the

posterior density p(x0:n|y0:n), x0:n := {x0, . . . , xn}, which

collects all statistical information about x0:n embodied by

y0:n. Particle filters approximate the desired posterior den-

sity by

p̂n(x0:n|y0:n) =

P−1∑

i=0

w(i)
n

δ(x0:n − x
(i)
0:n) (1)

where x
(i)
0:n are the so-called particles (totalling P of them),

w
(i)
n their respective weights and δ(.) denotes a Dirac unit

mass.

Particle filters differ from other Monte Carlo estimation

methods in that the estimate p̂n(x0:n|y0:n) is determined re-

cursively in time, and is accomplished sequentially by deter-

mining new particle elements {x
(i)
n }P−1

i=0 and updating their

respective weights {w
(i)
n }P−1

i=0 recursively.

2.1. Stochastic Particle Filters (SPF)

In this work, stochastic particle filters refer to the general

class of algorithms that perform particle extension, i.e., ob-

tain the elements {x
(i)
n }P−1

i=0 by means of random draws.

Though extensively described in the literature (see [4] for

a review), these algorithms are presented here in a slightly

modified form so as to set the stage for an easier introduc-

tion of deterministic algorithms, so that both approaches can

be appreciated from an unified standpoint.
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Briefly consider Table 1 which describes the SPF algo-
rithm known as “Bootstrap Filter” whose operation is aimed
at recursively generating samples of the joint posterior den-
sity p(x0:n|y0:n). By factorizing this density as

p(x0:n|y0:n) ∝ p(x0:n−1|y0:n−1)
p(xn|x0:n−1, y0:n−1)p(yn|x0:n, y0:n−1),

(2)

one can easily show that, starting from the set

{x
(i)
0:n−1;w

(i)
n−1}

P−1
i=0

that approximates p(x0:n−1|y0:n−1) via (1), the set

{x
(i)
0:n;w

(i)
n−1}

P−1
i=0

obtained after step 1 (Table 1) approximates the predictive
density p(x0:n|y0:n−1), accounting for the factor p(xn|
x0:n−1, y0:n) in (2). Likewise step 2 accounts for the fac-
tor p(yn|x0:n, y0:n−1) in (2), generating a weighted sample
of p(x0:n|y0:n), which may be replaced by an unweighted
sample if step 3 (resampling) is carried out.

1) Draw x
(i)
n ∼ p(xn|x

(i)
0:n−1, y0:n−1).

2) Evaluate and normalize the weights

w
(i)
n ∝ w

(i)
n−1p(yn|x

(i)
0:n, y0:n−1).

3) (Optional) Resample particles from the discrete

density (w
(0)
n , . . . , w

(P−1)
n ) and set w

(i)
n = 1/P .

Table 1. Stochastic Particle Filter employing Prior Impor-
tance Function (Bootstrap Filter).

2.2. Deterministic Particle Filters (DPF)

Stochastically drawing new particle elements as done in step
1 (Table 1) is not mandatory. In fact, this procedure in-
troduces unwanted variabilities ( [4],Chap. 2), which can
be mitigated in a general framework by the use of semi-
deterministic or deterministic methods, especially when the
inferred variable xn has a discrete distribution. In this spe-
cial case, a set {x(i,j)

0:n ; ŵ
(i,j)
n }P−1,D−1

i=0,j=0 with DP samples of
the predictive distribution p(x0:n|y0:n−1) can be obtained
deterministically as follows:

1a) Extend the trajectories x
(i)
0:n−1 deterministically, ob-

taining x
(i,j)
0:n := {x

(i)
0:n−1, x

(j)
n }, where x

(j)
n , 0 ≤ j <

D − 1 are all possible values for xn.

1b) Evaluate and normalize the weights ŵ
(i,j)
n ∝ w

(i)
n−1

p(x
(i,j)
n |x

(i)
0:n−1, y0:n−1).

A set {x(i)
0:n;w

(i)
n }P−1

i=0 with P samples of the updated poste-
rior density can then be obtained according to the following
procedure:

2) Update and normalize the weights as
w

(i,j)
n ∝ ŵ

(i,j)
n p(yn|x

(i,j)
0:n , y0:n−1).

3) Apply a (deterministic or stochastic) particle selec-
tion algorithm to obtain P samples from the discrete
density {x

(i,j)
0:n ;w

(i,j)
n }P−1,D−1

i=0,j=0 .

Note that differently from stochastic algorithms, deter-
ministic particle filters must perform particle selection (step
3) at each iteration to keep the number of particles constant.
In the present comparisons, we consider classical stochas-
tic (multinomial and residual [4]) particle selection methods
(SPS) and the deterministic method (DPS) proposed in [2]
which has very low computational complexity, selecting a
new particle set by simply discarding the (D − 1)P least
weighted particles of the original set and re-normalizing the
weights of the remaining ones. As opposed to stochastic
methods, the deterministic methods produce bias because,
on average, each particle is not selected a number of times
proportional to its own weight, a fact, however, that does
not affect algorithm convergence properties ( [4], Cap. 2).

3. JOINT BLIND EQUALIZATION AND

DECODING

To state the joint blind equalization/decoding problem and
to deduce the densities needed to apply particle filters to
its solution, consider initially a (1/R rate) convolutionally
coded digital communication system that transmits BPSK
symbols over a frequency selective channel subject to addi-
tive gaussian noise. Denoting the transmitted bit sequence
by bk, the coded sequence c

(m)
k

, 0 ≤ m < R, is obtained as

c
(m)
k

=

(
K∑

i=0

bk−id
(m)
i

+

K∑

i=1

c
(m)
k−i

r
(m)
i

)
mod 2, (3)

where K is the convolutional code constraint length and
d
(m)
i

and r
(m)
i

are the code generating coefficients associ-
ated with the direct and the recursive polynomials respec-
tively. The transmitted BPSK signal is then obtained as
sRn+m = 2c

(m)
n − 1.

We assume a linear and time-invariant FIR transmission
channel under perfect receiver synchronization, so that baud
rate samples yk of the received signal are expressed by the
base-band equivalent model

yk =

L−1∑

l=0

hlsk−l + vk , (4)

where hl is the channel impulse response, L its duration in
symbol intervals and vk additive zero-mean white circular
gaussian noise of variance σ2

v
. Our objective is to obtain
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MAP estimates b̂k of the transmitted bits given the observed
data, i.e.,

b̂k = arg max
bk

p(bk|y0:k
), (5)

where y
0:k

:= (y0, . . . , y(k+1)R−1).
To obtain estimates of the posterior density via both

stochastic and deterministic particle filters, we need to eval-
uate the densities p(bk|b0:k−1, y0:k−1

) and p(y
k
|b0:k, y

0:k−1
).

Under the assumption that the transmitted bits are equipro-
bable and IID, the first density reduces to p(bk). Moreover,
as the bit sequence bk uniquely defines the transmitted sym-
bol sequence sk, the second density can be determined as

p(y
k
|b0:k, y

0:k−1
) = p(y

k
|S0:(k+1)R−1, y0:k−1

) , (6)

where Sk , [ sk . . . sk−L+1 ]T , and (s0, . . . , s(k+1)R−1)
is the symbol sequence corresponding to the bit sequence
b0:k.

Exploiting the fact that p(yj |S0:j , y0:j−1) = p(yj |S0:k,

y0:j−1), k > j, the density on the r.h.s. of (6) further de-
composes as

p(y
k
|S0:(k+1)R−1, y0:k−1

) =

R(k+1)−1∏

j=Rk

p(yj |S0:j , y0:j−1) . (7)

To determine p(yj |S0:j , y0:j−1) note that the above def-
initions allow rewriting (4) as

{
Sj+1 = FSj + e1 sj+1

yj = hHSj + vj

(8)

where F is an (L × L) shift matrix (all entries zero, ex-
cept for the first subdiagonal, whose entries are ones), e1 =
[ 1 0 · · · 0 ]T and h = [ h0 · · · hL−1 ]T .

From (8) one can see that yj is conditionally gaussian
given Sj and h. Under the assumption that the parameters
h have a joint gaussian prior distribution, one obtains [5]

p(yj |S0:j , y0:j−1) = NC

(
yj | ĥH

j−1Sj ; SH

j
Σj−1Sj + σ2

v

)
,

(9)
where ĥj and Σj , respectively the conditional mean and
variance of h are obtained by means of conventional Kalman
filter iterations:

ĥj = ĥj−1 +
y

j
− SH

j
ĥj−1

SH

j
Σj−1Sj + σ2

v

Σj−1Sj . (10)

Σj = Σj−1 −
Σj−1SjS

H

j
Σj−1

SH

j
Σj−1Sj + σ2

v

. (11)

As a final observation, it is worth mentioning that the al-
gorithm described so far, in addition to providing filtered es-
timates, can be easily extended to determine fixed-lag smoo-
thed estimates of the transmitted bits, since for d > 0 [6]:

p(b0:k|y0:k+d
) ≈

∑
M

i=1 w
(i)
k+d

δ(b
(i)
0:k − b0:k)

∑
M

i=1 w
(i)
k+d

. (12)

4. SIMULATION RESULTS

To compare these methods we carried out Monte Carlo sim-
ulations in which we measured mean bit error rates (BER)
over 500 independent realizations produced by a commu-
nication system that transmits BPSK (±1) symbols over
a frequency selective channel with 3 random coefficients
drawn independently in each realization from the multivari-
ate complex gaussian distribution Nc(h|0; I). We assumed
that the additive noise is a zero-mean complex circular gaus-
sian process with variance σ2

v
, so that the signal-to-noise ra-

tio (SNR) is defined as

SNR := ‖h‖2/2σ2
v
.

The transmitted BPSK symbols are obtained as the non-
interleaved output of the binary 1/2−rate recursive system-
atic convolutional code given in polynomial notation by

[
1,

1 + D + D2

1 + D2

]
.

To compute the mean BER, the algorithms processed
200 message bits in each realization, discarding the first
100 to allow for algorithm convergence. The initial parti-
cle states S

(i)
−1 were drawn from IID equiprobable ±1 r.v.,

and we assumed that Σ
(i)
−1 = I and h

(i)
−1 ∼ NC(h|0; I).

For comparison, we also show the performance obtained
by an alternative scheme, consisting of a MAP decoder fed
with the symbol posterior probabilities obtained by a MAP
equalizer employing the correct channel parameters.

The mean BER obtained by the proposed methods as a
function of the SNR is shown in Fig. 1. In this simulation,
all particle filter based algorithms employed 250 particles
and a zero smoothing-lag (d = 0). As one can verify, the
methods based on DPF outperformed their stochastic coun-
terparts, and the algorithm employing deterministic particle
selection strategy (DPF-DPS) outperformed all other blind
algorithms by a large margin. Notice, however, that the per-
formance of the proposed methods ceases to improve for
SNR’s larger than 10 dB. This effect was observed to per-
sist even if a much larger number of particles is employed.

In Fig. 2 we show the performance obtained under the
same conditions, adopting now a fixed smoothing lag of
d = 10. As one may notice, the performance of the SPF and
of the DPF-SPS algorithms remained largely unchanged.
The performance of deterministic filter employing deter-
ministic selection (DPF-DPS), on the other hand, was much
improved, coming close to that of the trained scheme.

Finally, in Fig. 3 we evaluate the performance of the de-
terministic particle filter employing deterministic selection
(DPF-DPS) as a function of the number of particles P . As
one may notice, the performance of the proposed method is
greatly improved when the number of particles P is raised
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Fig. 1. Performance of the deterministic (DPF) and stochas-

tic (SPF) joint equalization and decoding methods as a func-

tion of the SNR, employing multinomial, residual and de-

terministic (DPS) resampling strategies (d = 0), and of the

alternative MAP method described in the text. The SPF al-

gorithms employ the optimal importance function and are

implemented as described in [3].

to 100, remaining practically unchanged as P is further in-

creased.

As a final remark, it is worth mentioning that the com-

putational complexity of the proposed DPF-DPS scheme is

comparable to that of turbo joint blind equalization and de-

coding techniques [7]. While the proposed DPF-DPS tech-

nique requires O(PL2) operations per bit, turbo techniques

performing MMSE channel re-estimation require O(I(L2+
2K)), where I is the number of iterations performed (usu-

ally I ≈ 10) and K is the code constraint length.

5. CONCLUSION

In this work we evaluated the performance of determin-

istic particle filtering structures for joint blindly equaliz-

ing/decoding convolutionally coded signals transmitted over

frequency selective channels. Numerical simulations show

that the algorithms based on deterministic particle filters

outperform the stochastic alternatives, and that the perfor-

mance advantage of the deterministic particle filtering me-

thod is widened if a deterministic particle selection strategy

is employed.

-2 0 2 4 6 8 10 12
10

-4

10
-3

10
-2

10
-1

10
0

MAP
DPF-DPS
DPF-Multinomial
DPF-Residual
SPF-Multinomial
SPF-Residual

Fig. 2. Performance of the deterministic (DPF) and stochas-

tic (SPF) joint equalization and decoding methods as a func-

tion of the SNR, employing multinomial, residual and deter-

ministic (DPS) resampling strategies (d = 10), and of the

alternative MAP method described in the text. The SPF al-

gorithms employ the optimal importance function and are

implemented as described in [3].
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Fig. 3. Performance of the deterministic joint equalization

and decoding algorithm (DPF-DPS) and of the alternative

MAP method described in the text as a function of the SNR

and of the number of particles (d = 10).
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