Theory of Large Dimensional Random Matrices for Engineers
(Part I)

Antonia M. Tulino
Università degli Studi di Napoli, "Federico II"

The 9th International Symposium on Spread Spectrum Techniques and Applications, Manaus, Amazon, Brazil, August 28-31, 2006
A brief historical tour of the main results in random matrix theory.
Outline

- A brief historical tour of the main results in random matrix theory.
- Overview some of the main transforms.
Outline

- A brief historical tour of the main results in random matrix theory.
- Overview some of the main transforms.
- Fundamental limits of wireless communications: basic channels.
Outline

- A brief historical tour of the main results in random matrix theory.
- Overview some of the main transforms.
- Fundamental limits of wireless communications: basic channels.
- Performance measures of engineering interest (Signal Processing / Information Theory).
Outline

- A brief historical tour of the main results in random matrix theory.
- Overview some of the main transforms.
- Fundamental limits of wireless communications: basic channels.
- Performance measures of engineering interest (Signal Processing / Information Theory).
- Stieltjes transform, and its role in understanding eigenvalues of random matrices (Part II)
• A brief historical tour of the main results in random matrix theory.

• Overview some of the main transforms.

• Fundamental limits of wireless communications: basic channels.

• Performance measures of engineering interest (Signal Processing / Information Theory).

• Stieltjes transform, and its role in understanding eigenvalues of random matrices (Part II)

• Limit theorems of three classes of random matrices (Part II)
Outline

- A brief historical tour of the main results in random matrix theory.
- Overview some of the main transforms.
- Fundamental limits of wireless communications: basic channels.
- Performance measures of engineering interest (Signal Processing / Information Theory).
- Stieltjes transform, and its role in understanding eigenvalues of random matrices (Part II)
- Limit theorems of three classes of random matrices (Part II)
- Proof of one of the theorems (Part II)
Today random matrices find applications in fields as diverse as the Riemann hypothesis, stochastic differential equations, statistical physics, chaotic systems, numerical linear algebra, neural networks, etc.

Random matrices are also finding an increasing number of applications in the context of information theory and signal processing.
Random Matrices & Information Theory

- The applications in information theory include, among others:
 - Wireless communications channels
 - Learning and neural networks
 - Capacity of ad hoc networks
 - Speed of convergence of iterative algorithms for multiuser detection
 - Direction of arrival estimation in sensor arrays

- Earliest applications to wireless communication: works of Foschini and Telatar, in the mid-90s, on characterizing the capacity of multi-antenna channels.

A. M. Tulino and S. Verdú
“Random Matrices and Wireless Communications,”
Foundations and Trends in Communications and Information Theory,
vol. 1, no. 1, June 2004.
Wireless Channels

\[y = Hx + n \]

- \(x = K \)-dimensional complex-valued input vector,
- \(y = N \)-dimensional complex-valued output vector,
- \(n = N \)-dimensional additive Gaussian noise
- \(H = N \times K \) random channel matrix known to the receiver

This model applies to a variety of communication problems by simply reinterpreting \(K, N, \) and \(H \):

- Fading
- Wideband
- Multiuser
- Multiantenna
Multi-Antenna channels

\[\mathbf{y} = \mathbf{Hx} + \mathbf{n} \]

- \(\mathbf{y} \): number of transmit and receive antennas
- \(\mathbf{H} \): propagation matrix, \(N \times K \) complex matrix whose entries represent the gains between each transmit and each receive antenna.
Multi-Antenna channels

Prototype picture courtesy of Bell Labs (Lucent Technologies)
Multi-Antenna channels

Prototype picture courtesy of Ball Labs (Lucent Technologies)

\[y = Hx + n \]

- \(K \) and \(N \) number of transmit and receive antennas

- \(H = \text{propagation matrix} \): \(N \times K \) complex matrix whose entries represent the gains between each transmit and each receive antenna.
CDMA (Code-Division Multiple Access) Channel

Signal space with N dimensions.

$N = \text{"spreading gain"} = \text{proportional to Bandwidth}$

Each user assigned a “signature vector” known at the receiver

[* DS-CDMA (Direct sequence CDMA) used in many current cellular systems (IS-95, cdma2000, UMTS).

[* MC-CDMA (Multi-Carrier CDMA) being considered for 4G (Fourth Generation) wireless.
DS-CDMA Flat-faded Channel

\[y = \underbrace{H}_{SA} x + n = SAx + n \]

- \(K \) = number of users; \(N \) = processing gain.
- \(S = [s_1 \mid \ldots \mid s_K] \) with \(s_k \) the signature vector of the \(k^{th} \) user.
- \(A \) is a \(K \times K \) diagonal matrix containing the independent complex fading coefficients for each user.
Multi-Carrier CDMA (MC-CDMA)

\[y = \begin{pmatrix} H \end{pmatrix} \begin{pmatrix} x \end{pmatrix} + \begin{pmatrix} n \end{pmatrix} = \begin{pmatrix} G \end{pmatrix} \circ \begin{pmatrix} S \end{pmatrix} \begin{pmatrix} x \end{pmatrix} + \begin{pmatrix} n \end{pmatrix} \]

- \(K \) and \(N \) represent the number of users and of subcarriers.
- \(H \) incorporates both the spreading and the frequency-selective fading i.e.
 \[h_{nk} = g_{nk}s_{nk} \quad n = 1, \ldots, N \quad k = 1, \ldots, K \]
- \(S=\begin{bmatrix} s_1 \mid \ldots \mid s_K \end{bmatrix} \) with \(s_k \) the signature vector of the \(k^{\text{th}} \) user.
- \(G=\begin{bmatrix} g_1 \mid \ldots \mid g_K \end{bmatrix} \) is an \(N \times K \) matrix whose columns are independent \(N \)-dimensional random vectors.
Role of Singular Values in Wireless Communication
Definition: The ESD (Empirical Spectral Distribution) of an $N \times N$ Hermitian random matrix A, $F_A^N(\cdot)$,

$$F_A^N(x) = \frac{1}{N} \sum_{i=1}^{N} 1\{\lambda_i(A) \leq x\}$$

where $\lambda_1(A), \ldots, \lambda_N(A)$ are the eigenvalues of A.

If, as $N \to \infty$, $F_A^N(\cdot)$ converges almost surely (a.s), the corresponding limit (asymptotic ESD) is simply denoted by $F_A(\cdot)$.

$\bar{F}_A^N(\cdot)$ denotes the expected ESD.
Role of Singular Values: Mutual Information

\[I(\text{SNR}) = \frac{1}{N} \log \det (I + \text{SNR} HH^\dagger) \]

\[= \frac{1}{N} \sum_{i=1}^{N} \log \left(1 + \text{SNR} \lambda_i (HH^\dagger) \right) \]

\[= \int_{0}^{\infty} \log \left(1 + \text{SNR} x \right) dF_{HH^\dagger}^N (x) \]

with \(F_{HH^\dagger}^N (x) \) the ESD of \(HH^\dagger \) and with

\[\text{SNR} = \frac{NE[\|x\|^2]}{KE[\|n\|^2]} \]

the signal-to-noise ratio, a key performance measure.
In an ergodic time-varying channel,

\[\mathbb{E}[\mathcal{I}(\text{SNR})] = \frac{1}{N} \mathbb{E} \left[\log \det \left(\mathbf{I} + \text{SNR} \mathbf{HH}^\dagger \right) \right] \]

\[= \int_0^\infty \log \left(1 + \text{SNR} x \right) d\bar{F}_\text{HH}^\dagger \]

where \(\bar{F}_\text{HH}^\dagger (\cdot) \) denotes the expected ESD.
For $\text{SNR} \to \infty$, a regime of interest in short-range applications, the mutual information behaves as

$$I(\text{SNR}) = S_\infty (\log \text{SNR} + L_\infty) + o(1)$$

where the key measures are the high-SNR slope

$$S_\infty = \lim_{\text{SNR} \to \infty} \frac{I(\text{SNR})}{\log \text{SNR}}$$

which for most channels gives $S_\infty = \min \{ \frac{K}{N}, 1 \}$, and the power offset

$$L_\infty = \lim_{\text{SNR} \to \infty} \log \text{SNR} - \frac{I(\text{SNR})}{S_\infty}$$

which essentially boils down to $\log \det(\text{HH}^\dagger)$ or $\log \det(\text{H}^\dagger\text{H})$ depending on whether $K > N$ or $K < N$.
The minimum mean-square error (MMSE) incurred in the estimation of the input x based on the noisy observation at the channel output y for an i.i.d. Gaussian input:

$$
\text{MMSE} = \frac{1}{K} E[||x - \hat{x}||^2] = \frac{1}{K} \sum_{k=1}^{K} E[|x_k - \hat{x}_k|^2] = \frac{1}{K} \sum_{k=1}^{K} \text{MMSE}_k
$$

where \hat{x} is the estimate of x. For an i.i.d Gaussian input,

$$
\text{MMSE} = \frac{1}{K} \text{tr} \left((I + \text{SNR} H^\dagger H)^{-1} \right) = \frac{1}{K} \sum_{i=1}^{K} \frac{1}{1 + \text{SNR} \lambda_i (H^\dagger H)} = \int_0^\infty \frac{1}{1 + \text{SNR} x} dF_{\text{H}^\dagger \text{H}}(x)
$$

$$
= \frac{N}{K} \int_0^\infty \frac{1}{1 + \text{SNR} x} dF_{\text{HH}^\dagger}(x) - \frac{N - K}{K}
$$
In the Beginning ...

Probability density function of the Wishart matrix:

$$HH^\dagger = h_1 h_1^\dagger + \ldots + h_n h_n^\dagger$$

where h_i are iid zero-mean Gaussian vectors.
Wishart Matrices

Definition 1. The $m \times m$ random matrix $A = HH^\dagger$ is a (central) real/complex Wishart matrix with n degrees of freedom and covariance matrix Σ, $(A \sim \mathcal{W}_m(n, \Sigma))$, if the columns of the $m \times n$ matrix H are zero-mean independent real/complex Gaussian vectors with covariance matrix Σ.\(^1\)

The p.d.f. of a complex Wishart matrix $A \sim \mathcal{W}_m(n, \Sigma)$ for $n \geq m$ is

$$f_A(B) = \frac{\pi^{-m(m-1)/2}}{\det \Sigma^n \prod_{i=1}^m (n-i)!} \exp \left[-\text{tr} \left\{ \Sigma^{-1}B \right\} \right] \det B^{n-m}. \quad (1)$$

\(^1\)If the entries of H have nonzero mean, HH^\dagger is a non-central Wishart matrix.
Singular Values*\(^2\): Fisher-Hsu-Girshick-Roy

The joint p.d.f. of the ordered strictly positive eigenvalues of the Wishart matrix \(HH^\dagger \):

Joint distribution of ordered nonzero eigenvalues (Fisher in 1939, Hsu in 1939, Girshick in 1939, Roy in 1939):

\[\gamma_{t,r} \exp \left(- \sum_{i=1}^{t} \lambda_i \right) \prod_{i=1}^{t} \lambda_i^{r-t} \prod_{j=i+1}^{t} (\lambda_i - \lambda_j)^2 \]

where \(t \) and \(r \) are the minimum and maximum of the dimensions of \(\mathbf{H} \).

The marginal p.d.f. of the unordered eigenvalues is

\[\sum_{k=0}^{t-1} \frac{k!}{(k + r - t)!} \left[L_k^{r-t}(\lambda) \right]^2 \lambda^{r-t} e^{-\lambda} \]

where the Laguerre polynomials are

\[L_k^n(\lambda) = \frac{1}{k!} e^{\lambda} \lambda^{-n} \frac{d^k}{d\lambda^k} \left(e^{-\lambda} \lambda^{n+k} \right). \]
Figure 1: Joint p.d.f. of the unordered positive eigenvalues of the Wishart matrix $H H^\dagger$ with $n = 3$ and $m = 2$.
Theorem 1. The matrix of eigenvectors of Wishart matrices is uniformly distributed on the manifold of unitary matrices (Haar measure)
Unitarily invariant RMs

- **Definition**: An $N \times N$ self-adjoint random matrix A is called *unitarily invariant* if the p.d.f. of A is equal to that of VAV^\dagger for any unitary matrix V.

- **Property**: If A is unitarily invariant, it admits the following eigenvalue decomposition:

 $$A = U\Lambda U^\dagger.$$

 with U and Λ independent.

- **Example**

 - A Wishart matrix is unitarily invariant.
 - $A = \frac{1}{2}(H + H^\dagger)$ with H a $N \times N$ Gaussian matrix with i.i.d entries, is unitarily invariant.
 - $A = UBU$ with U Haar matrix and B independent on U, is unitarily invariant.
Bi-Unitarily invariant RMs

• **Definition**: An $N \times N$ random matrix A is called *bi-unitarily invariant* if its p.d.f. equals that of UAV^\dagger for any unitary matrices U and V.

• **Property**: If A is a bi-unitarily invariant RM, it has a polar decomposition $A = UH$ with

 \ast U $N \times N$ Haar RM.
 \ast H $N \times N$ unitarily invariant positive-definite RM.
 \ast U and H independent.

Example:

\ast A complex Gaussian random matrix with i.i.d. entries is bi-unitarily invariant.

\ast An $N \times K$ matrix Q uniformly distributed over the Stiefel manifold of complex $N \times K$ matrices such that $QQ^\dagger = I$.

\[W = \frac{1}{\sqrt{N}} \begin{bmatrix} 0 & +1 & +1 & -1 & -1 & +1 \\ +1 & 0 & -1 & -1 & +1 & +1 \\ +1 & -1 & 0 & +1 & +1 & -1 \\ -1 & -1 & +1 & 0 & +1 & +1 \\ -1 & +1 & +1 & +1 & 0 & -1 \\ +1 & +1 & -1 & +1 & -1 & 0 \end{bmatrix} \]

As the matrix dimension \(N \to \infty \), the histogram of the eigenvalues converges to the *semicircle law*:

\[f(x) = \frac{1}{2\pi} \sqrt{4 - x^2}, \quad -2 < x < 2 \]

Motivation: bypass the Schrödinger equation and explain the statistics of experimentally measured atomic energy levels in terms of the limiting spectrum of those random matrices.

If the upper-triangular entries are independent zero-mean random variables with variance $\frac{1}{N}$ (standard Wigner matrix) such that, for some constant κ, and sufficiently large N

$$\max_{1 \leq i \leq j \leq N} \mathbb{E} \left[|W_{i,j}|^4 \right] \leq \frac{\kappa}{N^2} \quad (2)$$

Then, the empirical distribution of W converges almost surely to the semicircle law.
The semicircle law density function compared with the histogram of the average of 100 empirical density functions for a Wigner matrix of size $N = 10$.

The Semicircle Law
Girko (1984), *full-circle law* for the unsymmetrized matrix

\[
\mathbf{H} = \frac{1}{\sqrt{N}} \begin{bmatrix}
+1 & +1 & +1 & -1 & -1 & +1 \\
-1 & -1 & -1 & -1 & +1 & +1 \\
+1 & -1 & -1 & +1 & +1 & -1 \\
+1 & -1 & -1 & -1 & +1 & +1 \\
-1 & -1 & +1 & -1 & -1 & -1 \\
-1 & -1 & +1 & +1 & +1 & +1
\end{bmatrix}
\]

As \(N \to \infty \), the eigenvalues of \(\mathbf{H} \) are uniformly distributed on the unit disk.

The full-circle law and the eigenvalues of a realization of a 500 \(\times \) 500 matrix

Theorem 2. Let \mathbf{H} be an $N \times N$ complex random matrix whose entries are independent random variables with identical mean and variance and finite kth moments for $k \geq 4$. Assume that the joint distributions of the real and imaginary parts of the entries have uniformly bounded densities. Then, the asymptotic spectrum of \mathbf{H} converges almost surely to the circular law, namely the uniform distribution over the unit disk on the complex plane $\{ \zeta \in \mathbb{C} : |\zeta| \leq 1 \}$ whose density is given by

$$f_c(\zeta) = \frac{1}{\pi} \quad |\zeta| \leq 1$$

(also holds for real matrices replacing the assumption on the joint distribution of real and imaginary parts with the one-dimensional distribution of the real-valued entries.)

If the off-diagonal entries are Gaussian and pairwise correlated with correlation coefficient ρ, the eigenvalues are asymptotically uniformly distributed on an ellipse in the complex plane whose axes coincide with the real and imaginary axes and have radii $1 + \rho$ and $1 - \rho$.
What About the Singular Values?
Asymptotic Distribution of Singular Values:
Quarter circle law

Consider an $N \times N$ matrix H whose entries are independent zero-mean complex (or real) random variables with variance $\frac{1}{N}$, the asymptotic distribution of the singular values converges to

$$q(x) = \frac{1}{\pi} \sqrt{4 - x^2}, \quad 0 \leq x \leq 2 \quad (4)$$
Asymptotic Distribution of Singular Values:
Quarter circle law

The quarter circle law compared a histogram of the average of 100 empirical singular value density functions of a matrix of size 100×100.
Minimum Singular Value of Gaussian Matrix

Theorem 3. The minimum singular value of an $N \times N$ standard complex Gaussian matrix H satisfies

$$\lim_{N \to \infty} P[N\sigma_{\min} \geq x] = e^{-x-x^2/2}.$$ \hfill (5)
Marčenko-Pastur Law

Rediscovering/Strengthening the Marčenko-Pastur Law

Marčenko-Pastur Law

If $N \times K$-matrix H has zero-mean i.i.d. entries with variance $\frac{1}{N}$, the asymptotic ESD of HH^\dagger found in (Marčenko-Pastur, 1967) is

$$
\tilde{f}_\beta(x) = [1 - \beta]^+ \delta(x) + \frac{\sqrt{[x - a]^+[b - x]^+}}{2\pi x}
$$

where

$$
[z]^+ = \max\{0, z\},
$$

and

$$
a = \left(1 - \sqrt{\beta}\right)^2 \quad \quad b = \left(1 + \sqrt{\beta}\right)^2.
$$

$$
\frac{K}{N} \rightarrow \beta
$$
Marčenko-Pastur Law

If $N \times K$-matrix H has zero-mean i.i.d. entries with variance $\frac{1}{N}$, the asymptotic ESD of HH^\dagger found in (Marčenko-Pastur, 1967) is

$$
\tilde{f}_\beta(x) = [1 - \beta]^+ \delta(x) + \frac{\sqrt{[x - a]^+ [b - x]^+}}{2\pi x}
$$

(Bai 1999) The results also holds if only a unit second-moment condition is placed on the entries of H and

$$
\frac{1}{K} \sum \mathbb{E} \left[|H_{i,j}|^2 \mathbb{1} \{ |H_{i,j}| \geq \delta \} \right] \to 0
$$

for any $\delta > 0$ (*Lindeberg-type condition* on the whole matrix).
Lemma: (Yin 1986, Bai 1999): For any $N \times K$ matrices A and B,

$$\sup_{x \geq 0} |F^N_{A^\dagger}(x) - F^N_{B^\dagger}(x)| \leq \frac{\text{rank}(A - B)}{N}.$$

Lemma: (Yin 1986, Bai 1999): For any $N \times N$ Hermitian matrices A and B,

$$\sup_{x \geq 0} |F^N_A(x) - F^N_B(x)| \leq \frac{\text{rank}(A - B)}{N}.$$

Using these Lemmas, all results illustrated so far can be extended to matrices whose mean has rank r where $r > 1$ but such that

$$\lim_{N \to \infty} \frac{r}{N} = 0.$$
Generalizations needed!

- Correlated Entries

\[H = \sqrt{\Phi_R} S \sqrt{\Phi_T} \]

- **S:** \(N \times K \) matrix whose entries are independent complex random variables (arbitrarily distributed)
- **\(\Phi_R \):** \(N \times N \) either deterministic or random matrix (whose asymptotic spectrum converges a.s. to a compactly supported measure).
- **\(\Phi_T \):** \(K \times K \) either deterministic or random matrix whose asymptotic spectrum converges a.s. to a compactly supported measure.

- Non-identically Distributed Entries

\(H \) be an \(N \times K \) complex random matrix with independent entries (arbitrarily distributed) with identical means.

\[\text{Var}[H_{i,j}] = \frac{G_{i,j}}{N} \]

with \(G_{i,j} \) uniformly bounded.

Special case: Doubly Regular Channels
1. Stieltjes transform

2. η transform

3. Shannon transform

4. R-transform

5. S-transform
The Stieltjes Transform

The Stieltjes transform (also called the Cauchy transform) of an arbitrary random variable X is defined as

$$S_X(z) = \mathbb{E}\left[\frac{1}{X - z}\right]$$

whose inversion formula was obtained in:

$$f_X(\lambda) = \lim_{\omega \to 0^+} \frac{1}{\pi} \text{Im} \left[S_X(\lambda + j\omega) \right]$$
The η-Transform [Tulino-Verdú 2004]

The η-transform of a nonnegative random variable X is given by

$$
\eta_X(\gamma) = \mathbb{E}\left[\frac{1}{1 + \gamma X}\right]
$$

where γ is a nonnegative real number, and thus, $0 < \eta_X(\gamma) \leq 1$.

Note:

$$
\eta_X(\gamma) = \sum_{k=0}^{\infty} (-\gamma)^k \mathbb{E}[X^k],
$$
Given a $K \times K$ Hermitian matrix $A = H^\dagger H$,

- the η-transform of its expected ESD is

$$\eta_{E_N}(\gamma) = \frac{1}{K} \sum_{i=1}^{K} E\left[\frac{1}{1 + \gamma \lambda_i(H^\dagger H)}\right] = \frac{1}{N} E\left[\text{tr}\left\{(I + \gamma H^\dagger H)^{-1}\right\}\right]$$

- the η-transform of its asymptotic ESD is

$$\eta_A(\gamma) = \int_0^\infty \frac{1}{1 + \gamma x} dF_A(x) = \lim_{K \to \infty} \frac{1}{K} \text{tr}\{(I + \gamma H^\dagger H)^{-1}\}$$

$\eta(\gamma) = \text{generating function for the expected (asymptotic) moments of } A.$

$\eta_{(SNR)} = \text{Minimum Mean Square Error}$
The Shannon transform of a nonnegative random variable X is defined as

$$V_X(\gamma) = \mathbb{E}[\log(1 + \gamma X)]$$

where $\gamma > 0$.

- The Shannon transform gives the capacity of various noisy coherent communication channels.
Given a $N \times N$ Hermitian matrix $A = HH^\dagger$,

- the Shannon transform of its expected ESD is

$$\mathcal{V}_{F_A}(\gamma) = \frac{1}{N} \mathbb{E} [\log \det (I + \gamma A)]$$

- the Shannon transform of its asymptotic ESD is

$$\mathcal{V}_A(\gamma) = \lim_{N \to \infty} \frac{1}{N} \log \det (I + \gamma A)$$

$$\mathcal{I}_{SNR, HH^\dagger} = \mathcal{V}_{SNR}$$
\[
\frac{\gamma}{\log e} \frac{d}{d\gamma} \nu_X(\gamma) = 1 - \frac{1}{\gamma} S_X \left(-\frac{1}{\gamma} \right) = 1 - \eta_X(\gamma)
\]
\[
\frac{\gamma}{\log e} \frac{d}{d\gamma} \nu_X(\gamma) = 1 - \frac{1}{\gamma} s_X \left(-\frac{1}{\gamma} \right) = 1 - \eta_X(\gamma)
\]

\[\downarrow\]

\[
\text{SNR} \frac{d}{d\text{SNR}} \mathcal{I}(\text{SNR}) = \frac{K}{N} (1 - \text{MMSE})
\]

\[\sum_{X}(x) = -\frac{x + 1}{x} \eta_{X}^{-1}(1 + x) \]

which maps \((-1, 0)\) onto the positive real line.
S-transform: Key Theorem

Let A and B be independent random matrices, if either:

♠ B is unitarily or bi-unitarily invariant,

♣ or both A and B have i.i.d entries

then S-transform of the spectrum of AB is:

$$
\Sigma_{AB}(x) = \Sigma_A(x)\Sigma_B(x)
$$

and

$$
\eta_{AB}(\gamma) = \eta_A \left(\frac{\gamma}{\Sigma_B(\eta_{AB}(\gamma) - 1)} \right)
$$
S-transform: Example

Let

\[H = CQ \]

where:

\[K \leq N \]

\[Q \] is an \(N \times K \) matrix independent of \(C \) and uniformly distributed over the Stiefel manifold of complex \(N \times K \) matrices such that \(QQ^\dagger = I \).

Since \(Q \) is bi-unitarily invariant then

\[\eta_{CQQ^\dagger C^\dagger}(SNR) = \eta_{CC^\dagger} \left(\frac{\beta - 1 + \eta_{CQQ^\dagger C^\dagger}}{\eta_{CQQ^\dagger C^\dagger}(SNR)} \right) \]

and

\[\nu_{CQQ^\dagger C^\dagger}(\gamma) = \int_{0}^{SNR} \frac{1}{x} \left(1 - \eta_{CQQ^\dagger C^\dagger}(x) \right) dx \]
Downlink MC-CDMA with Orthogonal Sequences and equal-power

\[y = CQAx + n, \]

where:

* \(Q \) = the orthogonal spreading sequences
* \(A \) = the \(K \times K \) diagonal matrix of transmitted amplitudes with \(A = I \)
* \(C \) = the \(N \times N \) matrix of fading coefficients.

\[\frac{1}{K} \sum_{k=1}^{K} \sum_{\text{MMSE}_{k}} \text{a.s.} \eta_{Q}^\dagger C_{Q}^\dagger C_{Q}(\text{SNR}) = 1 - \frac{1}{\beta}(1 - \eta_{C} C_{Q}^\dagger C_{Q}(\text{SNR})) \]

An alternative characterization of the Shannon-transform (inspired by the optimality by successive cancellation with MMSE) is

\[\mathcal{V}_{CQ}^\dagger C_{Q}(\gamma) = \beta \mathbb{E} [\log (1 + \mathcal{I}(Y, \gamma))] \]

with

\[\frac{\mathcal{I}(y, \gamma)}{1 + \mathcal{I}(y, \gamma)} = \mathbb{E} \left[\frac{\gamma |C|^2}{\beta y \gamma |C|^2 + 1 + (1 - \beta y)\mathcal{I}(y, \gamma)} \right] \]

where \(Y \) is a random variable uniform on \([0, 1]\).
R-transform

\[R_X(z) = S_X^{-1}(-z) - \frac{1}{z}. \]

(7)

R-transform and \(\eta \)-transform

The R-transform (restricted to the negative real axis) of a non-negative random variable \(X \) is given by

\[R_X(\varphi) = \frac{\eta_X(\gamma) - 1}{\varphi} \]

with \(\gamma \) and \(\varphi \) satisfying \(\varphi = -\gamma \eta_X(\gamma) \)

Let A and B be independent random matrices, if either:

- B is unitarily or bi-unitarily invariant,
- or both A and B have i.i.d entries

then the *R-transform* of the spectrum of the sum is $R_{A+B} = R_A + R_B$ and

$$
\eta_{A+B}(\gamma) = \eta_A(\gamma_a) + \eta_B(\gamma_b) - 1
$$

with γ_a, γ_b and γ satisfying the following pair of equations:

$$
\gamma_a \eta_A(\gamma_a) = \gamma \eta_{A+B}(\gamma) = \gamma_b \eta_B(\gamma_b)
$$
Random Quadratic Forms

Theorem 4. *Let the components of the N-dimensional vector x be zero-mean and independent with variance $\frac{1}{N}$. For any $N \times N$ nonnegative definite random matrix B independent of x whose spectrum converges almost surely,*

$$
\lim_{N \to \infty} x^\dagger (I + \gamma B)^{-1} x = \eta_B(\gamma) \quad \text{a.s.} \tag{8}
$$

$$
\lim_{N \to \infty} x^\dagger (B - zI)^{-1} x = S_B(z) \quad \text{a.s.} \tag{9}
$$
Rationale

Stieltjes: Description of asymptotic distribution of singular values + tool for proving results (Marčenko-Pastur (1967))

η: Description of asymptotic distribution of singular values + signal processing insight

Shannon: Description of asymptotic distribution of singular values + information theory insight
Non-asymptotic Shannon Transform

Example: For $N \times K$-matrix H having zero-mean i.i.d. Gaussian entries:

$$V(SNR) = \sum_{k=0}^{t-1} \sum_{\ell_1=0}^{k} \sum_{\ell_2=0}^{k} \binom{k}{\ell_1} (k + r - t)!(-1)^{\ell_1+\ell_2}I_{\ell_1+\ell_2+r-t}(SNR) \frac{(k - \ell_2)!}{(k - \ell_2)!} (r - t + \ell_1)!(r - t + \ell_2)!\ell_2!$$

$$I_0(SNR) = -e_{SNR}^{\frac{1}{SNR}} E_i\left(-\frac{1}{SNR}\right)$$

$$I_n(SNR) = nI_{n-1}(SNR) + (-SNR)^{-n} \left(I_0(SNR) + \sum_{k=1}^{n} (k - 1)! (-SNR)^k \right)$$

For the η-Transform

$$\eta(SNR) = 1 - \frac{SNR}{\beta} \frac{d}{dSNR} V(SNR)$$
Asymptotics

- $K \to \infty$
- $N \to \infty$
- $\frac{K}{N} \to \beta$
Example: The Shannon transform of the Marčenko-Pastur law is

$$\mathcal{V}(\text{SNR}) = \log \left(1 + \text{SNR} - \frac{1}{4} \mathcal{F}(\text{SNR}, \beta) \right)$$

$$+ \frac{1}{\beta} \log \left(1 + \text{SNR} \beta - \frac{1}{4} \mathcal{F}(\text{SNR}, \beta) \right) - \frac{\log e}{4 \beta_{\text{SNR}}} \mathcal{F}(\text{SNR}, \beta)$$

where

$$\mathcal{F}(x, z) = \left(\sqrt{x(1 + \sqrt{z})^2 + 1} - \sqrt{x(1 - \sqrt{z})^2 + 1} \right)^2$$

while its η-transform is

$$\eta_{HH}^\dagger(\text{SNR}) = \left(1 - \frac{\mathcal{F}(\text{SNR}, \beta)}{4 \text{SNR}} \right)$$
Shannon Capacity $= \mathcal{C}_F^{N \to \infty \text{SNR}} = \frac{1}{N} \sum_{i=1}^{N} \log \left(1 + \text{SNR} \lambda_i (\text{HH}^\dagger) \right)$

$\beta = 1$ for sizes: $N = 3, 5, 15, 50$
Distribution Insensitivity: The asymptotic eigenvalue distribution does not depend on the distribution with which the independent matrix coefficients are generated.

“Ergodicity”: The eigenvalue histogram of one matrix realization converges almost surely to the asymptotic eigenvalue distribution.

Speed of Convergence: $8 = \infty$.
Marčenko-Pastur Law: Applications

- Unfaded Equal-Power DS-CDMA
- Canonical model (i.i.d. Rayleigh fading MIMO channels)
- Multi-Carrier CDMA channels whose sequences have i.i.d. entries
More General Models

- **Correlated Entries**

 \[H = \sqrt{\Phi_R} S \sqrt{\Phi_T} \]

 S: \(N \times K \) matrix whose entries are independent complex random variables (arbitrarily distributed) with identical means and variance \(\frac{1}{N} \).

 \(\Phi_R \): \(N \times N \) random matrix whose asymptotic spectrum converges a.s. to a compactly supported measure.

 \(\Phi_T \): \(K \times K \) random matrix whose asymptotic spectrum converges a.s. to a compactly supported measure.

- **Non-identically Distributed Entries**

 \(H \) be an \(N \times K \) complex random matrix with independent entries (arbitrarily distributed) with identical means.

 \[
 \text{Var}[H_{i,j}] = \frac{G_{i,j}}{N}
 \]

 with \(G_{i,j} \) uniformly bounded.

 Special case: Doubly Regular Channels
Definition: An $N \times K$ matrix P is \textit{asymptotically mean row-regular} if

$$\lim_{K \to \infty} \frac{1}{K} \sum_{j=1}^{K} P_{i,j}$$

is independent of i as $\frac{K}{N} \to \beta$.

Definition: P is \textit{asymptotically mean column-regular} if its transpose is asymptotically mean row-regular.

Definition: P is \textit{asymptotically mean doubly-regular} if it is both asymptotically mean row-regular and asymptotically mean column-regular.

- If the limits
 $$\lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} P_{i,j} = \lim_{K \to \infty} \frac{1}{K} \sum_{j=1}^{K} P_{i,j} = 1$$
 then P is \textit{standard asymptotically mean doubly-regular}.

Doubly Regular Matrices [Tulino-Lozano-Verdu,2005]
Regular Matrices: Example

- An $N \times K$ rectangular Toeplitz matrix

$$P_{i,j} = \varphi(i - j)$$

with $K \geq N$ is an asymptotically mean row-regular matrix.

- If either the function φ is periodic or $N = K$, then the Toeplitz matrix is asymptotically mean doubly-regular.
Double Regularity: Engineering Insight

where S has i.i.d. entries with variance $\frac{1}{N}$ and thus $\text{Var}[H_{i,j}] = \frac{P_{i,j}}{N}$

gain between copolar antennas (σ) different from gain between crosspolar antennas (χ) and thus when antennas with two orthogonal polarizations are used

\[
P = \begin{bmatrix}
\sigma & \chi & \sigma & \chi & \ldots \\
\chi & \sigma & \chi & \sigma & \ldots \\
\sigma & \chi & \sigma & \chi & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{bmatrix}
\]

which is mean doubly regular.
Theorem: Define an $N \times K$ complex random matrix H whose entries

- are independent (arbitrarily distributed) satisfying the Lindeberg condition and with identical means.
- have variances

$$\text{Var}[H_{i,j}] = \frac{P_{i,j}}{N}$$

with P an $N \times K$ deterministic standard asymptotically doubly-regular matrix whose entries are uniformly bounded for any N.

The ESD of $H^\dagger H$ converges a.s. to the Marčenko-Pastur law.

This result extends to matrices $H = H_0 + \bar{H}$ whose mean has rank $r > 1$ such that

$$\lim_{N \to \infty} \frac{r}{N} = 0.$$
One-Side Correlated Entries

Let $H = S\sqrt{\Phi}$ (or $H = \sqrt{\Phi}S$) with:

S: $N \times K$ matrix whose entries are independent (arbitrarily distributed) with identical mean and variance $\frac{1}{N}$.

Φ: $K \times K$ (or $N \times N$) deterministic correlation matrix whose asymptotic ESD converges to a compactly supported measure.

Then,

$$\nu_{HH^\dagger}(\gamma) = \beta \nu_{\Phi}(\eta_{HH^\dagger}\gamma) + \log \frac{1}{\eta_{HH^\dagger}} + (\eta_{HH^\dagger} - 1) \log e$$

with $\eta_{HH^\dagger}(\gamma)$ satisfying

$$\beta = \frac{1 - \eta_{HH^\dagger}}{1 - \eta_{\Phi}(\gamma\eta_{HH^\dagger})}.$$
One-Side Correlated Entries: Applications

- Multi-Antenna Channels with correlation either only at the transmitter or at the receiver.

- DS-CDMA with Frequency-Flat Fading; in this case

\[\Phi = AA^\dagger \] with \(A \) the \(K \times K \) diagonal matrix of complex fading coefficients
Correlated Entries

Let

\[H = \text{CSA} \]

\(\mathbf{S} \): \(N \times K \) complex random matrix whose entries are i.i.d with variance \(\frac{1}{N} \).

\(\Phi_{\mathbf{R}} = \mathbf{C} \mathbf{C}^\dagger \): \(N \times N \) either determinist or random matrix such that its ESD converges a.s. to a compactly supported measure.

\(\Phi_{\mathbf{T}} = \mathbf{A} \mathbf{A}^\dagger \): \(K \times K \) either determinist or random matrix such that its ESD of converges a.s. to a compactly supported measure.

Definition: Let \(\Lambda_{\mathbf{R}} \) and \(\Lambda_{\mathbf{T}} \) be independent random variables with distributions given by the asymptotic ESD of \(\Phi_{\mathbf{R}} \) and \(\Phi_{\mathbf{T}} \).
Correlated Entries: Applications

- Multi-Antenna Channels with correlation at the transmitter and receiver (Separable correlation model); in this case:
 - $\Phi_R = \text{the receive correlation matrix respectively},$
 - $\Phi_T = \text{the transmit correlation matrix}.$

- Downlink MC-CDMA with frequency-selective fading and i.i.d sequences; in this case:
 - $C = \text{the } N \times N \text{ diagonal matrix containing fading coefficient for each subcarrier},$
 - $A = \text{the } K \times K \text{ deterministic diagonal matrix containing the amplitudes of the users}.$
Correlated Entries: Applications

- Downlink DS-CDMA with Frequency-Selective Fading; in this case:
 - $C = \text{the } N \times N \text{ Toeplitz matrix defined as:}$
 $$\begin{align*}
 (C)_{i,j} &= \frac{1}{W_c} c \left(\frac{i - j}{W_c} \right) \\
 \text{with } c(\cdot) \text{ the impulse response of the channel},
 \end{align*}$$
 - $A = K \times K \text{ deterministic diagonal matrix containing the amplitudes of the users.}$
• The η-transform is:

$$\eta_{HH}^\dagger(\gamma) = \eta_{\Phi_R}(\beta \gamma_r(\gamma)).$$

• The Shannon transform is:

$$\nu_{HH}^\dagger(\gamma) = \nu_{\Phi_R}(\beta \gamma_r) + \beta \nu_{\Phi_T}(\gamma_t) - \beta \frac{\gamma_r \gamma_t}{\gamma} \log e$$

where

$$\frac{\gamma_r \gamma_t}{\gamma} = 1 - \eta_{\Phi_T}(\gamma_t) \quad \beta \frac{\gamma_r \gamma_t}{\gamma} = 1 - \eta_{\Phi_R}(\beta \gamma_r)$$
The η-transform is:

$$\eta_{HH^{\dagger}}(\gamma) = \mathbb{E} \left[\frac{1}{1 + \beta \Lambda_R \gamma_r(\gamma)} \right].$$

The Shannon transform is:

$$\mathcal{V}_{HH^{\dagger}}(\gamma) = \mathbb{E} \left[\log_2(1 + \beta \Lambda_R \gamma_r) \right] + \beta \mathbb{E} \left[\log_2(1 + \Lambda_T \gamma_t) \right] - \beta \frac{\gamma_r \gamma_t}{\gamma} \log_2 e$$

where

$$\frac{\gamma_r \gamma_t}{\gamma} = \gamma_t \mathbb{E} \left[\frac{\Lambda_T}{1 + \Lambda_T \gamma_t} \right] \quad \beta \frac{\gamma_r \gamma_t}{\gamma} = \beta \gamma_r \mathbb{E} \left[\frac{\Lambda_R}{1 + \beta \Lambda_R \gamma_r} \right]$$
Arbitrary Numbers of Dimensions: Shannon Transform of Correlated channels

- The η-transform is:

\[
\eta_{HH^\dagger}(\gamma) \approx \frac{1}{n_R} \sum_{i=1}^{n_R} \frac{1}{1 + \beta \lambda_i(\Phi_R) \gamma_r}.
\]

- The Shannon transform is:

\[
V_{HH^\dagger}(\gamma) \approx \sum_{i=1}^{n_R} \log_2 (1 + \beta \lambda_i(\Phi_R) \gamma_r) + \beta \sum_{j=1}^{n_T} \log_2 (1 + \lambda_j(\Phi_T) \gamma_t) - \beta \frac{\gamma_t \gamma_r}{\gamma} \log_2 e
\]

\[
\frac{\gamma_r}{\gamma} = \frac{1}{n_T} \sum_{j=1}^{n_T} \frac{\lambda_j(\Phi_T)}{1 + \lambda_j(\Phi_T) \gamma_t}
\]

\[
\frac{\gamma_t}{\gamma} = \frac{1}{n_R} \sum_{i=1}^{n_R} \frac{\lambda_i(\Phi_R)}{1 + \beta \lambda_i(\Phi_R) \gamma_r}.
\]
Example: Mutual Information of a Multi-Antenna Channel

The transmit correlation matrix: \((\Phi_T^\dagger)_{i,j} \approx e^{-0.05 d^2(i-j)^2} \) with \(d \) antenna spacing (wavelengths).
Correlated Entries (Hanly-Tse, 2001)

- S be a $N \times K$ matrix with i.i.d entries
- $A_\ell = \text{diag}\{A_{1,\ell}, \ldots, A_{K,\ell}\}$ where $\{A_{k,\ell}\}$ are i.i.d. random variables
- \bar{S} be a $NL \times K$ matrix with i.i.d entries
- P a $K \times K$ diagonal matrix whose k-th diagonal entry $(P)_{k,k} = \sum_{\ell=1}^{L} A_{k,\ell}^2$.

The distribution of the singular values of the matrix

\[
H = \begin{bmatrix}
SA_1 \\
\vdots \\
SA_L
\end{bmatrix}
\] \tag{11}

is the same as the distribution of the singular values of the matrix

$\bar{S}\sqrt{P}$

Applications: DS-CDMA with Flat Fading and Antenna Diversity: $\{A_{k,\ell}\}$ are the i.i.d. fading coefficients of the kth user at the ℓth antenna and S is the signature matrix.

Engineering interpretation: the effective spreading gain \equiv the CDMA spreading gain \times the number of receive antennas
Let \mathbf{H} be an $N \times K$ complex random matrix:

- Entries are independent (arbitrarily distributed) satisfying the Lindeberg condition and with identical means,

- $\text{Var}[H_{i,j}] = \frac{P_{i,j}}{N}$

where \mathbf{P} is an $N \times K$ deterministic matrix whose entries are uniformly bounded.
Arbitrary Numbers of Dimensions: Shannon Transform for IND Channels

\[\nu_{\text{HH}^+}(\gamma) \approx \beta \sum_{j=1}^{n_T} \log_2 (1 + \gamma \Gamma_j) + \sum_{i=1}^{n_R} \log_2 \left(1 + \frac{\gamma \beta}{n_T} \sum_{j=1}^{n_T} (P)_{i,j} \Upsilon_j \right) - \frac{\gamma \beta}{n_T} \sum_{j=1}^{n_T} \Gamma_j \Upsilon_j \]

where

\[\Gamma_j = \frac{1}{n_R} \sum_{i=1}^{n_R} \frac{(P)_{i,j}}{1 + \frac{1}{n_T} \sum_{j=1}^{n_T} (P)_{i,j} \Upsilon_j} \]

\[\Upsilon_j = \frac{\gamma}{1 + \gamma \Gamma_j} \]

- \(\text{SNR} \Gamma_j \) = SINR exhibited by \(x_j \) at the output of a linear MMSE receiver,
- \(\Upsilon_j / \text{SNR} \) = the corresponding MSE.
Non-identically Distributed Entries: Special cases

- \(P \) is asymptotic doubly regular. In which case:

\[\nu_{HH^\dagger}(\gamma) \text{ and } \eta_{HH^\dagger}(\gamma) \equiv \text{Shannon and } \eta \text{ of the Marčenko-Pastur Law.} \]

- \(P \) is the outer product of the nonnegative \(N \)-vector \(\lambda_R \) and \(K \)-vector \(\lambda_T \). In this case:

\[G = \lambda_R \lambda_T^\dagger \quad \Rightarrow \quad H = \sqrt{\text{diag}(\lambda_R)} S \sqrt{\text{diag}(\lambda_T)} \]
Non-identically Distributed Entries: Applications

- MC-CDMA frequency-selective fading and i.i.d sequences (Uplink and Downlink).

- Uplink DS-CDMA with Frequency-Selective Fading:

Non-identically Distributed Entries: Applications

- Multi-Antenna Channels with
 - Polarization Diversity:
 \[H = \sqrt{P} \circ H_w \]
 where \(H_w \) is zero-mean i.i.d. Gaussian and \(P \) is a deterministic matrix with nonnegative entries.
 \((P)_{i,j} \) is the power gain between the \(j \)th transmit and \(i \)th receive antennas, determined by their relative polarizations.

- Non-separable Correlations
 \[H = UH_wU^\dagger \]
 where \(U_R \) and \(U_T \) are unitary while the entries of \(\tilde{H} \) are independent zero-mean Gaussian. A more restrictive case is when \(U_R \) and \(U_T \) are Fourier matrices.
 This model is advocated and experimentally supported in W. Weichselberger et al., A stochastic mimo channel model with joint correlation of both link ends, *IEEE Trans. on Wireless Com.*., vol. 5, no. 1, pp. 90–100, 2006.
Example: Mutual Information of a Multi-Antenna Channel

\[G = \begin{bmatrix} 0.4 & 3.6 & 0.5 \\ 0.3 & 1 & 0.2 \end{bmatrix} \]

Mutual Information (bits/s/Hz) vs. SNR (dB)
• \(\{ H_i \} \) varies ergodically over the duration of a codeword.

• The quantity of interest is then the mutual information averaged over the fading, \(\mathbb{E} \left[I_{(\text{SNR}, \mathbf{H}\Phi\mathbf{H}^\dagger)} \right] \), with

\[
I_{(\text{SNR}, \mathbf{H}\Phi\mathbf{H}^\dagger)} = \frac{1}{N} \log \det \left(I + \text{SNR} \mathbf{H}\Phi\mathbf{H}^\dagger \right)
\]
Non-ergodic Conditions

- Often, however, \mathbf{H} is held approximately constant during the span of a codeword.

- Outage capacity (cumulative distribution of mutual information),

\[
\mathbb{P}_{\text{out}}(R) = \mathbb{P}[\log \det(\mathbf{I} + \text{SNR} \mathbf{H}\mathbf{H}^\dagger) < R]
\]

- The normalized mutual information converges a.s. to its expectation as $K, N \to \infty$ (hardening / self-averaging)

\[
\frac{1}{N} \log \det(\mathbf{I} + \text{SNR} \mathbf{H}\mathbf{H}^\dagger) \xrightarrow{a.s.} \mathcal{N}_{\mathbf{H}\mathbf{H}^\dagger(\text{SNR})} = \lim_{N \to \infty} \frac{1}{N} \mathbb{E}[\log \det(\mathbf{I} + \text{SNR} \mathbf{H}\mathbf{H}^\dagger)]
\]

However, non-normalized mutual information

\[
I(\text{SNR}, \mathbf{H}\mathbf{H}^\dagger) = \log \det(\mathbf{I} + \text{SNR} \mathbf{H}\mathbf{H}^\dagger)
\]

still suffers random fluctuations that, while small relative to the mean, are vital to the outage capacity.
As $K, N \to \infty$ with $\frac{K}{N} \to \beta$, the random variable

$$\Delta_N = \log \det(I + \text{SNR} \, HH^\dagger) - N \nu_{HH^\dagger}(\text{SNR})$$

is asymptotically zero-mean Gaussian with variance

$$\mathbb{E} [\Delta^2] = -\log \left(1 - \frac{(1 - \eta_{HH^\dagger}(\text{SNR}))^2}{\beta}\right)$$
For fixed numbers of antennas, mean and variance of the mutual information of the IID channel given by [Smith & Shafi ’02] and [Wang & Giannakis ’04]. Approximate normality observed numerically.

Arguments supporting the asymptotic normality of the cumulative distribution of mutual information given:

※ in [Hochwald et al. ’04], for $\text{SNR} \to 0$ or $\text{SNR} \to \infty$.

※ in [Moustakas et al. ’03] using the replica method from statistical physics (not yet fully rigorized).

※ in [Kamath et al. ’02], asymptotic normality proved rigorously for any SNR using Bai & Silverstein’s CLT.
Theorem: As $K, N \to \infty$ with $\frac{K}{N} \to \beta$, the random variable

$$
\Delta_N = \log \det (I + SNR S \Phi_T S^\dagger) - NV_{S\Phi_T S^\dagger}(SNR)
$$

is asymptotically zero-mean Gaussian with variance

$$
E[\Delta^2] = - \log \left(1 - \beta E \left[\left(\frac{T_{SNR} \eta_{S\Phi_T S^\dagger}(SNR)}{1 + T_{SNR} \eta_{S\Phi_T S^\dagger}(SNR)} \right)^2 \right] \right)
$$

with expectation over the nonnegative random variable T whose distribution equals the asymptotic ESD of Φ_T.
Examples

In the examples that follow, transmit antennas correlated with

$$(\Phi_T)_{i,j} = e^{-0.2(i-j)^2}$$

which is typical of an elevated base station in suburbia. The receive antennas are uncorrelated.

The outage capacity is computed by applying our asymptotic formulas to finite (and small) matrices,

$$\mathcal{V}_{S\Phi_T S^\dagger (\text{SNR})} \approx \frac{1}{N} \sum_{j=1}^{K} \log \left(1 + \text{SNR} \lambda_j(\Phi_T) \eta \right) - \log \eta + (\eta - 1) \log e$$

$$\eta = \frac{1}{1 + \text{SNR} \sum_{j=1}^{K} \frac{\lambda_j(\Phi_T)}{1 + \text{SNR} \lambda_j(\Phi_T) \eta}}$$

$$\mathbb{E}[\Delta^2] = -\log \left(1 - \beta \frac{1}{K} \sum_{j=1}^{K} \left[\left(\frac{\lambda_j(\Phi_T)\text{SNR} \eta}{1 + \lambda_j(\Phi_T)\text{SNR} \eta} \right)^2 \right] \right)$$
$K = 5$ transmit and $N = 10$ receive antennas, $\text{SNR} = 10$.
Example: 10%-Outage Capacity ($K = N = 2$)

<table>
<thead>
<tr>
<th>SNR (dB)</th>
<th>Simul.</th>
<th>Asympt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.52</td>
<td>0.50</td>
</tr>
<tr>
<td>10</td>
<td>2.28</td>
<td>2.27</td>
</tr>
</tbody>
</table>

SNR (dB)

10% Outage Capacity (bits/s/Hz)

Transmitter ($K=2$)
Receiver ($N=2$)
Example: 10\%-Outage Capacity ($K = 4, N = 2$)
Summary

- Various wireless communication channels: analysis tackled with the aid of random matrix theory.

- Shannon and η-transforms, motivated by the application of random matrices to the theory of noisy communication channels.

- Shannon transforms and η-transforms for the asymptotic ESD of several classes of random matrices.

- Application of the various findings to the analysis of several wireless channel in both ergodic and non-ergodic regime.

- Succinct expressions for the asymptotic performance measures.

- Applicability of these asymptotic results to finite-size communication systems.
A. M. Tulino and S. Verdú
“Random Matrices and Wireless Communications,”
Foundations and Trends in Communications and Information Theory,
vol. 1, no. 1, June 2004.
http://dx.doi.org/10.1561/0100000001
Theory of Large Dimensional Random Matrices for Engineers (Part II)

Jack Silverstein
North Carolina State University

The 9th International Symposium on Spread Spectrum Techniques and Applications, Manaus, Amazon, Brazil, August 28-31, 2006
1. **Introduction.** Let $\mathcal{M}(\mathbb{R})$ denote the collection of all sub-probability distribution functions on \mathbb{R}. We say for $\{F_N\} \subset \mathcal{M}(\mathbb{R})$, F_N converges vaguely to $F \in \mathcal{M}(\mathbb{R})$ (written $F_N \xrightarrow{v} F$) if for all $[a, b]$, a, b continuity points of F, $\lim_{N \to \infty} F_N([a, b]) = F([a, b])$. We write $F_N \xrightarrow{D} F$, when F_N, F are probability distribution functions (equivalent to $\lim_{N \to \infty} F_N(a) = F(a)$ for all continuity points a of F).

For $F \in \mathcal{M}(\mathbb{R})$,

$$S_F(z) \equiv \int \frac{1}{x - z} dF(x), \quad z \in \mathbb{C}^+ \equiv \{z \in \mathbb{C} : \Im z > 0\}$$

is defined as the Stieltjes transform of F.

1
Properties:

1. S_F is an analytic function on \mathbb{C}^+.

2. $\Im S_F(z) > 0$.

3. $|S_F(z)| \leq \frac{1}{\Im z}$.

4. For continuity points $a < b$ of F

$$F\{[a, b]\} = \frac{1}{\pi} \lim_{\eta \to 0^+} \int_a^b \Im S_F(\xi + i\eta) d\xi.$$

5. If, for $x_0 \in \mathbb{R}$, $\Im S_F(x_0) \equiv \lim_{z \in \mathbb{C}^+ \to x_0} \Im S_F(z)$ exists, then F is differentiable at x_0 with value $(\frac{1}{\pi})\Im S_F(x_0)$ (Silverstein and Choi (1995)).
Let $S \subset \mathbb{C}^+$ be countable with a cluster point in \mathbb{C}^+. Using 4., the fact that $F_N \overset{v}{\to} F$ is equivalent to

$$\int f_N(x)dF_N(x) \to \int f(x)dF(x)$$

for all continuous f vanishing at $\pm \infty$, and the fact that an analytic function defined on \mathbb{C}^+ is uniquely determined by the values it takes on S, we have

$$F_N \overset{v}{\to} F \iff S_{F_N}(z) \to S_F(z) \text{ for all } z \in S.$$
The fundamental connection to random matrices:

For any Hermitian $N \times N$ matrix A, we let F^A denote the empirical distribution function, or empirical spectral distribution (ESD), of its eigenvalues:

$$F^A(x) = \frac{1}{N} (\text{number of eigenvalues of } A \leq x).$$

Then

$$S_{F^A}(z) = \frac{1}{N} \text{tr} (A - zI)^{-1}.$$

So, if we have a sequence $\{A_N\}$ of Hermitian random matrices, to show, with probability one, $F^{A_N} \xrightarrow{v} F$ for some $F \in \mathcal{M}(\mathbb{R})$, it is equivalent to show for any $z \in \mathbb{C}^+$

$$\frac{1}{N} \text{tr} (A_N - zI)^{-1} \to S_F(z) \quad a.s.$$

For the remainder of the lecture S_A will denote S_{F^A}.
The main goal of this part of the tutorial is to present results on the limiting ESD of three classes of random matrices. The results are expressed in terms of limit theorems, involving convergence of the Stieltjes transforms of the ESD’s. An outline of the proof of the first result will be given. The proof will clearly indicate the importance of the Stieltjes transform to limiting spectral behavior. Essential properties needed in the proof will be emphasized in order to better understand where randomness comes in and where basic properties of matrices are used.
For each of the theorems, it is assumed that the sequence of random matrices are defined on a common probability space. They all assume:

For \(N = 1, 2, \ldots \) \(\mathbf{X} = \mathbf{X}_N = (X_{ij}^N), \ N \times K, \ X_{ij}^N \in \mathbb{C}, \) i.d. for all \(N, i, j, \) independent across \(i, j \) for each \(N, \) \(\mathbb{E}|X_{11}^1 - \mathbb{E}X_{11}^1|^2 = 1, \) and \(K = K(N) \) with \(K/N \to \beta > 0 \) as \(N \to \infty. \)

Let \(\mathbf{S} = \mathbf{S}_N = (1/\sqrt{N})\mathbf{X}_N. \)
Theorem 1.1 (Marčenko and Pastur (1967), Silverstein and Bai (1995)). Let T be a $K \times K$ real diagonal random matrix whose ESD converges almost surely in distribution, as $N \to \infty$ to a nonrandom limit. Let T denote a random variable with this limiting distribution. Let W_0 be an $N \times N$ Hermitian random matrix with ESD converging, almost surely, vaguely to a nonrandom distribution W_0 with Stieltjes transform denoted by S_0. Assume S, T, and W_0 to be independent, Then the ESD of

$$W = W_0 + STS^\dagger$$

converges vaguely, as $N \to \infty$, almost surely to a nonrandom distribution whose Stieltjes transform, $S(\cdot)$, satisfies for $z \in \mathbb{C}^+$

$$(1.1) \quad S(z) = S_0 \left(z - \beta E \left[\frac{T}{1 + TS(z)} \right] \right).$$

It is the only solution to (1.1) in \mathbb{C}^+.
Theorem 1.2 (Silverstein, in preparation). Define $H = CSA$, where C is $N \times N$ and A is $K \times K$, both random. Assume that the ESD’s of $D = CC^\dagger$ and $T = AA^\dagger$ converge almost surely in distribution to nonrandom limits, and let D and T denote random variables distributed, respectively, according to those limits. Assume C, A and S to be independent. Then the ESD of HH^\dagger converges in distribution, as $N \to \infty$, almost surely to a nonrandom limit whose Stieltjes transform, $S(\cdot)$, is given for $z \in \mathbb{C}^+$ by

$$S(z) = \mathbb{E} \left[\frac{1}{\beta D \mathbb{E} \left[\frac{T}{1+F(z)T} \right] - z} \right],$$

where $F(z)$ satisfies

(1.2) \hspace{1cm} F(z) = \mathbb{E} \left[\frac{D}{\beta D \mathbb{E} \left[\frac{T}{1+F(z)T} \right] - z} \right].$

$F(z)$ is the only solution to (1.2) in \mathbb{C}^+.

Theorem 1.3 (Dozier and Silverstein). Let H_0 be $N \times K$, random, independent of S, such that the ESD of $H_0H_0^\dagger$ converges almost surely in distribution to a nonrandom limit, and let M denote a random variable with this limiting distribution. Let $K > 0$ be nonrandom. Define

$$H = S + \sqrt{K}H_0.$$

Then the ESD of HH^\dagger converges in distribution, as $N \to \infty$, almost surely to a nonrandom limit whose Stieltjes transform S satisfies for each $z \in \mathbb{C}^+$

$$(1.3) \quad S(z) = \mathbb{E} \left[\frac{1}{KM} \frac{1}{1 + S(z)} - z(1 + S(z)) + (\beta - 1) \right].$$

$S(z)$ is the only solution to (1.3) with both $S(z)$ and $zS(z)$ in \mathbb{C}^+.

9
Remark: In Theorem 1.1 if $\mathbf{W}_0 = 0$ for all N large, then $S_0(z) = -1/z$ and we find that $S = S(z)$ has an inverse

$$z = -\frac{1}{S} + \beta \mathbb{E} \left[\frac{T}{1 + TS} \right].$$

(1.4)

All of the analytic behavior of the limiting distribution can be extracted from this equation (Silverstein and Choi).

Explicit solutions can be derived in a few cases. Consider the Mačenko-Pastur distribution, where $T = I$, that is, the matrix is simply SS^\dagger. Then $S = S(z)$ solves

$$z = -\frac{1}{S} + \beta \frac{1}{1 + S},$$

resulting in the quadratic equation

$$zs^2 + S(z + 1 - \beta) + 1 = 0$$
with solution

\[S = \frac{-(z + 1 - \beta) \pm \sqrt{(z + 1 - \beta)^2 - 4z}}{2z} = \frac{-(z + 1 - \beta) \pm \sqrt{z^2 - 2z(1 + \beta) + (1 - \beta)^2}}{2z} = \frac{-(z + 1 - \beta) \pm \sqrt{(z - (1 - \sqrt{\beta})^2)(z - (1 + \sqrt{\beta})^2)}}{2z} \]

We see the imaginary part of \(S \) goes to zero when \(z \) approaches the real line and lies outside the interval \([(1 - \sqrt{\beta})^2, (1 + \sqrt{\beta})^2]\), so we conclude from property 5. that for all \(x \neq 0 \) the limiting distribution has a density \(f \) given by

\[f(x) = \begin{cases} \frac{\sqrt{(x-(1-\sqrt{\beta})^2)((1+\sqrt{\beta})^2-x)}}{2\pi x} & x \in ((1 - \sqrt{\beta})^2, (1 + \sqrt{\beta})^2) \\ 0 & \text{otherwise.} \end{cases} \]
Considering the value of β (the limit of columns to rows) we can conclude that the limiting distribution has no mass at zero when $\beta \geq 1$, and has mass $1 - \beta$ at zero when $\beta < 1$.
2. Why these theorems are true. We begin with three facts which account for most of why the limiting results are true, and the appearance of the limiting equations for the Stieltjes transforms.

Lemma 2.1 For $N \times N \, \mathbf{A}, \, q \in \mathbb{C}^N$, and $t \in \mathbb{C}$ with \mathbf{A} and $\mathbf{A} + tqq^\dagger$ invertible, we have

$$q^\dagger(\mathbf{A} + tqq^\dagger)^{-1} = \frac{1}{1 + tq^\dagger \mathbf{A}^{-1}q} q^\dagger \mathbf{A}^{-1}$$

(since $q^\dagger \mathbf{A}^{-1} (\mathbf{A} + tqq^\dagger) = (1 + tq^\dagger \mathbf{A}^{-1}q) q^\dagger$).

Lemma 2.2 For $N \times N \, \mathbf{A}$ and \mathbf{B}, with \mathbf{B} Hermitian, $z \in \mathbb{C}^+$, $t \in \mathbb{R}$, and $q \in \mathbb{C}^N$, we have

$$|\text{tr} \left[(\mathbf{B} - z\mathbf{I})^{-1} - (\mathbf{B} + tqq^\dagger - z\mathbf{I})^{-1} \right] \mathbf{A}| = \left| t q^\dagger (\mathbf{B} - z\mathbf{I})^{-1} \mathbf{A} ((\mathbf{B} - z\mathbf{I})^{-1}q \right| \leq \frac{\| \mathbf{A} \| \Im z}{\Im z}.$$
Proof. The identity follows from Lemma 2.1. We have

\[
\left| t q^\dagger (B - zI)^{-1} A ((B - zI)^{-1} q) \right| \leq \|A\| |t| \frac{\| (B - zI)^{-1} q \|^2}{|1 + t q^\dagger (B - zI)^{-1} q|}.
\]

Write \(B = \sum_i \lambda_i e_i e_i^* \), its spectral decomposition. Then

\[
\| (B - zI)^{-1} q \|^2 = \sum_i \frac{|e_i^\dagger q|^2}{|\lambda_i - z|^2}
\]

and

\[
|1 + t q^\dagger (B - zI)^{-1} q| \geq |t| \Im(q^\dagger (B - zI)^{-1} q) = |t| \Im \sum_i \frac{|e_i^\dagger q|^2}{|\lambda_i - z|^2}.
\]
Lemma 2.3. For $X = (X_1, \ldots, X_N)^T$ i.i.d. standardized entries, $C \in \mathbb{R}^{N \times N}$, we have for any $p \geq 2$

$$\mathbb{E}|X^\dagger CX - \text{tr } C|^p \leq K_p \left((\mathbb{E}|X_1|^4 \text{tr } C C^\dagger)^{p/2} + \mathbb{E}|X_1|^{2p} \text{tr } (C C^\dagger)^{p/2} \right)$$

where the constant K_p does not depend on N, C, nor on the distribution of X_1. (Proof given in Bai and Silverstein (1998).)

Thus we have

$$\mathbb{E}\left| \frac{X^\dagger CX - \text{tr } C}{N} \right|^p \leq \frac{K_0}{N^{p/2}},$$

the constant K_0 depending on a bound on the $2p$-th moment of X_1 and on the norm of C. Roughly speaking, for large N, a scaled quadratic form involving a vector consisting of i.i.d. standardized random variables is close to the scaled trace of the matrix. As will be seen below, this is the only place where randomness comes in.
The first step needed to prove each of the theorems is truncation and centralization of the elements of \mathbf{X}, that is, showing that it is sufficient to prove each result under the assumption the elements have mean zero, variance 1, and are bounded, for each N, by a rate growing slower than N (log N is sufficient). These steps will be omitted. Although not needed for Theorem 1.1, additional truncation of the eigenvalues of \mathbf{D} and \mathbf{T} in Theorem 1.2 and \mathbf{HH}^\dagger in Theorem 1.3, all at a rate slower than N is also required (again, ln N is sufficient). We are at this stage able to go through algebraic manipulations, keeping in mind the above three lemmas, and intuitively derive the equation in Theorem 1.1.
Before continuing, two more basic properties of matrices are included here.

Lemma 2.4 Let $z_1, z_2 \in \mathbb{C}^+$ with $\max(\Re z_1, \Re z_2) \geq v > 0$, A and B $N \times N$ with A Hermitian, and $q \in \mathbb{C}^N$. Then

$$|\text{tr} B((A - z_1 I)^{-1} - (A - z_2 I)^{-1})| \leq |z_2 - z_1|N\|B\| \frac{1}{v^2}, \text{ and}$$

$$|q^\dagger B(A - z_1 I)^{-1} q - q^\dagger B(A - z_2 I)^{-1} q| \leq |z_2 - z_1| \|q\|^2 \|B\| \frac{1}{v^2}.$$
We now outline the proof of Theorem 1.1. Write $T = \text{diag}(t_1, \ldots, t_K)$. Let q_i denote the i^{th} column of S. Then

$$STS^\dagger = \sum_{i=1}^{K} t_i q_i q_i^*.$$

Let $W_{(i)} = W - t_i q_i q_i^\dagger$. For any $z \in \mathbb{C}^+$ and $x \in \mathbb{C}$ we write

$$W - zI = W_0 - (z - x)I + (1/N)STS^\dagger - xI.$$

Taking inverses we have

$$(W_0 - (z - x)I)^{-1}$$

$$= (W - zI)^{-1} + (W_0 - (z - x)I)^{-1}((1/N)STS^\dagger - xI)(W - zI)^{-1}.$$
Dividing by N, taking traces and using Lemma 2.1 we find

$$S_{W_0}(z-x) - S_W(z) = \frac{1}{N} \text{tr} \left(W_0 - (z-x)I \right)^{-1} \left(\sum_{i=1}^{K} t_i q_i q_i^\dagger - xI \right) (W-zI)^{-1}$$

$$= \frac{1}{N} \sum_{i=1}^{n} t_i q_i^\dagger (W_{(i)} - zI)^{-1} (W_0 - (z-x)I)^{-1} q_i \cdot \frac{1}{1 + t_i q_i^\dagger (W_{(i)} - zI)^{-1} q_i}$$

$$- x(1/N) \text{tr} (W - zI)^{-1} (W_0 - (z-x)I)^{-1}.$$

Notice when x and q_i are independent, Lemmas 2.2, 2.3 give us

$$q_i^\dagger (W_{(i)} - zI)^{-1} (W_0 - (z-x)I)^{-1} q_i \approx \frac{1}{N} \text{tr} (W - zI)^{-1} (W_0 - (z-x)I)^{-1}.$$
Letting

\[x = x_N = (1/N) \sum_{i=1}^{K} \frac{t_i}{1 + t_i S_W(z)} \]

we have

\[S_{W_0}(z - x_N) - S_W(z) = (1/N) \sum_{i=1}^{K} \frac{t_i}{1 + t_i S_W(z)} d_i \]

where

\[d_i = \frac{1 + t_i S_W(z)}{1 + t_i q_i^\dagger (W(i) - zI)^{-1} q_i} q_i^\dagger (W(i) - zI)^{-1} (W_0 - (z - x_N)I)^{-1} q_i \]

\[- \frac{1}{N} \text{tr} (W - zI)^{-1} (W_0 - (z - x_N)I)^{-1}. \]

In order to use Lemma 2.3, for each \(i \), \(x_N \) is replaced by

\[x(i) = (1/N) \sum_{j=1}^{K} \frac{t_j}{1 + t_j S_{W(i)}(z)}. \]
Using Lemma 2.3 ($p = 6$ is sufficient) and the fact that all matrix inverses encountered are bounded in spectral norm by $1/\mathfrak{S}z$ we have from standard arguments using Boole’s and Markov’s inequalities, and the Borel-Cantelli lemma, almost surely

\begin{equation}
\max_{i \leq K} \max \max [\|q_i\|^2 - 1, |q_i^\dagger (W_{(i)} - zI)^{-1} q_i - S_{W_{(i)}}(z)|, \\
|q_i^\dagger (W_{(i)} - zI)^{-1} (W_0 - (z - x_{(i)})I)^{-1} q_i - (1/N) \text{tr} (W_{(i)} - zI)^{-1} (W_0 - (z - x_{(i)})I)^{-1} |] \\
\rightarrow 0 \quad \text{as } N \rightarrow \infty.
\end{equation}

This and Lemma 2.2 imply almost surely

\begin{equation}
\max_{i \leq K} \max [\|S_W(z) - S_{W_{(i)}}(z)|, |S_W(z) - q_i^\dagger (W_{(i)} - zI)^{-1} q_i|] \rightarrow 0,
\end{equation}
and subsequently, almost surely

$$(2.3) \max_{i \leq K} \max_{i \leq K} \left[\left| \frac{1 + t_i S_w(z)}{1 + t_i q_i^\dagger (W_i - zI)^{-1} q_i} - 1 \right|, |x - x(i)| \right] \to 0.$$

Therefore, from Lemmas 2.2, 2.4, and (2.1) -(2.3), we get $\max_{i \leq K} d_i \to 0$ almost surely, giving us

$$S_{w_0}(z - x_N) - S_w(z) \to 0,$$

almost surely.
On any realization for which the above holds and $F^{W_0} \xrightarrow{v} W_0$, consider any subsequence which $S_{W}(z)$ converges to, say, S, then, on this subsequence

$$x_N = (K/N) \frac{1}{K} \sum_{i=1}^{K} \frac{t_i}{1 + t_i S_{W}(z)} \to \beta \mathbb{E}\left[\frac{T}{1 + TS} \right]$$

Therefore, in the limit we have

$$S = S_0 \left(z - \beta \mathbb{E}\left[\frac{T}{1 + TS} \right] \right),$$

which is (1.1). Uniqueness gives us, for this realization, $S_{W}(z) \to S$ as $N \to \infty$. This event occurs with probability one.
3. Proof of uniqueness of (1.1). For $S \in \mathbb{C}^+$ satisfying (1.1) with $z \in \mathbb{C}^+$ we have

$$S = \int \frac{1}{\tau - \left(z - \beta \mathbb{E} \left[\frac{T}{1 + TS} \right] \right)} d\mathcal{W}_0(\tau)$$

$$= \int \frac{1}{\tau - \Re \left(z - \beta \mathbb{E} \left[\frac{T}{1 + TS} \right] \right) - i \left(\Im z + \beta \mathbb{E} \left[\frac{T^2 \Im S}{|1 + TS|^2} \right] \right)} d\mathcal{W}_0(\tau)$$

Therefore

(3.1)

$$\Im S = \left(\Im z + \beta \mathbb{E} \left[\frac{T^2 \Im S}{|1 + TS|^2} \right] \right) \int \frac{1}{\left| \tau - z + \beta \mathbb{E} \left[\frac{T}{1 + TS} \right] \right|^2} d\mathcal{W}_0(\tau)$$
Suppose $S \in \mathbb{C}^+$ also satisfies (1.1). Then (3.2)

\[S - S = \beta \int \frac{\mathbb{E}\left[\frac{T}{1+TS} - \frac{T}{1+TSS} \right]}{\left(\tau - z + \beta \mathbb{E}\left[\frac{T}{1+TS} \right] \right) \left(\tau - z + \beta \mathbb{E}\left[\frac{T}{1+TSS} \right] \right)} dW_0(\tau) \]

\[= (S - S)\beta \mathbb{E}\left[\frac{T^2}{(1+TS)(1+TSS)} \right] \times \int \frac{1}{\left(\tau - z + \beta \mathbb{E}\left[\frac{T}{1+TS} \right] \right) \left(\tau - z + \beta \mathbb{E}\left[\frac{T}{1+TSS} \right] \right)} dW_0(\tau). \]

Using Cauchy-Schwarz and (3.1) we have

\[\left| \beta \mathbb{E}\left[\frac{T^2}{(1+TS)(1+TSS)} \right] \right| \times \int \frac{1}{\left(\tau - z + \beta \mathbb{E}\left[\frac{T}{1+TS} \right] \right) \left(\tau - z + \beta \mathbb{E}\left[\frac{T}{1+TSS} \right] \right)} dW_0(\tau) \leq 25 \]
\[
\left(\begin{array}{c}
\frac{T^2}{|1 + TS|^2} \int \frac{1}{|\tau - z + \beta E \left[\frac{T}{1 + TS} \right]|^2} dW_0(\tau) \\
\frac{T^2}{|1 + TS|^2} \int \frac{1}{|\tau - z + \beta E \left[\frac{T}{1 + TS} \right]|^2} dW_0(\tau)
\end{array} \right)^{1/2}
\]

\[
\times \left(\begin{array}{c}
\frac{T^2}{|1 + TS|^2} \int \frac{1}{|\tau - z + \beta E \left[\frac{T}{1 + TS} \right]|^2} dW_0(\tau) \\
\frac{T^2}{|1 + TS|^2} \int \frac{1}{|\tau - z + \beta E \left[\frac{T}{1 + TS} \right]|^2} dW_0(\tau)
\end{array} \right)^{1/2}
\]

\[
= \left(\beta E \left[\frac{T^2}{|1 + TS|^2} \right] \right)^{1/2} \left(\frac{\Im S}{\Im z + \beta E \left[\frac{T^2 \Im S}{|1 + TS|^2} \right]} \right)^{1/2}
\]

\[
\times \left(\beta E \left[\frac{T^2}{|1 + TS|^2} \right] \right)^{1/2} \left(\frac{\Im S}{\Im z + \beta E \left[\frac{T^2 \Im S}{|1 + TS|^2} \right]} \right)^{1/2} < 1.
\]

Therefore, from (3.2) we must have \(S = S \).